def optimize_fp16_onnx_with_cast(input_onnx_path, optimized_onnx_path,
                                 epsilon):
    m = onnx.load(input_onnx_path)
    onnx_model = OnnxModel(m)

    nodes_to_remove = onnx_model.nodes()
    nodes_to_add = [
        onnx.helper.make_node("Cast", ["input"], ["fp32_input"],
                              "cast_input",
                              to=1),
        onnx.helper.make_node("Cast", ["layer_norm.weight"],
                              ["fp32_layer_norm.weight"],
                              "cast_weight",
                              to=1),
        onnx.helper.make_node("Cast", ["layer_norm.bias"],
                              ["fp32_layer_norm.bias"],
                              "cast_bias",
                              to=1),
        onnx.helper.make_node(
            "LayerNormalization",
            ["fp32_input", "fp32_layer_norm.weight", "fp32_layer_norm.bias"],
            ["fp32_output"],
            "layer_norm",
            epsilon=epsilon),  # use fp32 epsilon
        onnx.helper.make_node("Cast", ["fp32_output"], ["output"],
                              "cast_output",
                              to=10)
    ]

    onnx_model.remove_nodes(nodes_to_remove)
    onnx_model.add_nodes(nodes_to_add)
    onnx_model.prune_graph()
    onnx_model.save_model_to_file(optimized_onnx_path)
def optimize_fp16_onnx_no_cast(input_onnx_path, optimized_onnx_path, epsilon):
    m = onnx.load(input_onnx_path)
    onnx_model = OnnxModel(m)

    nodes_to_remove = onnx_model.nodes()
    node_to_add = onnx.helper.make_node(
        "LayerNormalization",
        ["input", "layer_norm.weight", "layer_norm.bias"], ["output"],
        "layer_norm",
        epsilon=epsilon)

    onnx_model.remove_nodes(nodes_to_remove)
    onnx_model.add_node(node_to_add)
    onnx_model.prune_graph()
    onnx_model.save_model_to_file(optimized_onnx_path)
def optimize_fp16_onnx_no_cast(input_onnx_path, optimized_onnx_path, epsilon):
    m = onnx.load(input_onnx_path)
    onnx_model = OnnxModel(m)

    weight_name = get_weight(onnx_model)
    bias_name = get_bias(onnx_model)
    nodes_to_remove = [n for n in onnx_model.nodes() if n.output[0] != weight_name and n.output[0] != bias_name]

    nodes_to_remove = onnx_model.nodes()
    node_to_add = onnx.helper.make_node("LayerNormalization", ["input", weight_name, bias_name], ["output"],
                                        "layer_norm",
                                        epsilon=epsilon)

    onnx_model.remove_nodes(nodes_to_remove)
    onnx_model.add_node(node_to_add)
    onnx_model.prune_graph()
    onnx_model.save_model_to_file(optimized_onnx_path)
示例#4
0
    def remove_useless_reshape_nodes(model: OnnxModel):
        """Remove reshape node that is not needed based on symbolic shape inference: input and output has same shape
        """
        shape_infer = model.infer_runtime_shape(update=True)
        if shape_infer is None:
            return

        nodes_to_remove = []
        for node in model.nodes():
            if node.op_type == 'Reshape':
                input_shape = shape_infer.get_edge_shape(node.input[0])
                output_shape = shape_infer.get_edge_shape(node.output[0])
                if input_shape and output_shape and input_shape == output_shape:
                    logger.info(
                        f"Remove reshape node {node.name} since its input shape is same as output: {input_shape}"
                    )
                    nodes_to_remove.append(node)

        if nodes_to_remove:
            for node in nodes_to_remove:
                model.replace_input_of_all_nodes(node.output[0], node.input[0])
                model.remove_node(node)
            model.prune_graph()
示例#5
0
def optimize_fp16_onnx_with_cast(input_onnx_path, optimized_onnx_path,
                                 epsilon):
    m = onnx.load(input_onnx_path)
    onnx_model = OnnxModel(m)
    weight_name = get_weight(onnx_model)
    bias_name = get_bias(onnx_model)
    nodes_to_remove = [
        n for n in onnx_model.nodes()
        if n.output[0] != weight_name and n.output[0] != bias_name
    ]
    nodes_to_add = [
        onnx.helper.make_node("Cast", ["input"], ["fp32_input"],
                              "cast_input",
                              to=1),
        onnx.helper.make_node("Cast", [weight_name],
                              ["fp32_layer_norm.weight"],
                              "cast_weight",
                              to=1),
        onnx.helper.make_node("Cast", [bias_name], ["fp32_layer_norm.bias"],
                              "cast_bias",
                              to=1),
        onnx.helper.make_node(
            "LayerNormalization",
            ["fp32_input", "fp32_layer_norm.weight", "fp32_layer_norm.bias"],
            ["fp32_output"],
            "layer_norm",
            epsilon=epsilon,
        ),  # use fp32 epsilon
        onnx.helper.make_node("Cast", ["fp32_output"], ["output"],
                              "cast_output",
                              to=10),
    ]

    onnx_model.remove_nodes(nodes_to_remove)
    onnx_model.add_nodes(nodes_to_add)
    onnx_model.prune_graph()
    onnx_model.save_model_to_file(optimized_onnx_path)