示例#1
0
 def test_get_train_initializer(self):
     from onnxcustom.utils.orttraining_helper import get_train_initializer
     X, y = make_regression(  # pylint: disable=W0632
         100, n_features=10, bias=2)
     X = X.astype(numpy.float32)
     y = y.astype(numpy.float32)
     X_train, _, y_train, __ = train_test_split(X, y)
     reg = LinearRegression()
     reg.fit(X_train, y_train)
     reg.coef_ = reg.coef_.reshape((1, -1))
     onx = to_onnx(reg,
                   X_train,
                   target_opset=opset,
                   black_op={'LinearRegressor'})
     inits = get_train_initializer(onx)
     self.assertEqual({'intercept', 'coef'}, set(inits))
def benchmark(N=1000,
              n_features=100,
              hidden_layer_sizes="50,50",
              max_iter=500,
              learning_rate_init=1e-8,
              batch_size=15,
              run_skl=True,
              device='cpu',
              opset=14):
    """
    Compares :epkg:`onnxruntime-training` to :epkg:`scikit-learn` for
    training. Training algorithm is SGD.

    :param N: number of observations to train on
    :param n_features: number of features
    :param hidden_layer_sizes: hidden layer sizes, comma separated values
    :param max_iter: number of iterations
    :param learning_rate_init: initial learning rate
    :param batch_size: batch size
    :param run_skl: train scikit-learn in the same condition (True) or
        just walk through one iterator with *scikit-learn*
    :param device: `'cpu'` or `'cuda'`
    :param opset: opset to choose for the conversion
    """
    N = int(N)
    n_features = int(n_features)
    max_iter = int(max_iter)
    learning_rate_init = float(learning_rate_init)
    batch_size = int(batch_size)
    run_skl = run_skl in (1, True, '1', 'True')

    print("N=%d" % N)
    print("n_features=%d" % n_features)
    print(f"hidden_layer_sizes={hidden_layer_sizes!r}")
    print("max_iter=%d" % max_iter)
    print(f"learning_rate_init={learning_rate_init:f}")
    print("batch_size=%d" % batch_size)
    print(f"run_skl={run_skl!r}")
    print(f"opset={opset!r}")
    print(f"device={device!r}")
    print('------------------')

    if not isinstance(hidden_layer_sizes, tuple):
        hidden_layer_sizes = tuple(map(int, hidden_layer_sizes.split(",")))
    X, y = make_regression(N, n_features=n_features, bias=2)
    X = X.astype(numpy.float32)
    y = y.astype(numpy.float32)
    X_train, X_test, y_train, y_test = train_test_split(X, y)

    nn = MLPRegressor(hidden_layer_sizes=hidden_layer_sizes,
                      max_iter=max_iter if run_skl else 1,
                      solver='sgd',
                      learning_rate_init=learning_rate_init,
                      n_iter_no_change=max_iter,
                      batch_size=batch_size,
                      alpha=0,
                      nesterovs_momentum=False,
                      momentum=0,
                      learning_rate="invscaling")

    begin = time.perf_counter()
    with warnings.catch_warnings():
        warnings.simplefilter('ignore')
        nn.fit(X_train, y_train)
    dur_skl = time.perf_counter() - begin

    print("time_skl=%r, mean_squared_error=%r" %
          (dur_skl, mean_squared_error(y_train, nn.predict(X_train))))

    # conversion to ONNX
    onx = to_onnx(nn, X_train[:1].astype(numpy.float32), target_opset=opset)
    onx = onnx_rename_weights(onx)

    # list of weights
    weights = get_train_initializer(onx)
    print('weights:', list(sorted(weights)))

    # training
    print(f"device={device!r} get_device()={get_device()!r}")

    #######################################
    # The training session.

    train_session = OrtGradientForwardBackwardOptimizer(
        onx,
        list(weights),
        device=device,
        verbose=0,
        learning_rate=learning_rate_init,
        warm_start=False,
        max_iter=max_iter,
        batch_size=batch_size)

    begin = time.perf_counter()
    train_session.fit(X, y)
    dur_ort = time.perf_counter() - begin
    print("time_skl=%r, mean_squared_error=%r" %
          (dur_skl, mean_squared_error(y_train, nn.predict(X_train))))
    print("time_ort=%r, last_trained_error=%r" %
          (dur_ort, train_session.train_losses_[-1]))
sess = InferenceSession(onx_train.SerializeToString(),
                        providers=['CPUExecutionProvider'])
res = sess.run(None, {'X': X_test, 'label': y_test.reshape((-1, 1))})
print(f"onnx loss={res[0][0, 0] / X_test.shape[0]!r}")

#####################################
# Weights
# +++++++
#
# Every initializer is a set of weights which can be trained
# and a gradient will be computed for it.
# However an initializer used to modify a shape or to
# extract a subpart of a tensor does not need training.
# Let's remove them from the list of initializer to train.

inits = get_train_initializer(onx)
weights = {k: v for k, v in inits.items() if k != "shape_tensor"}
pprint(list((k, v[0].shape) for k, v in weights.items()))

#####################################
# Train on CPU or GPU if available
# ++++++++++++++++++++++++++++++++

device = "cuda" if get_device().upper() == 'GPU' else 'cpu'
print(f"device={device!r} get_device()={get_device()!r}")

#######################################
# Stochastic Gradient Descent
# +++++++++++++++++++++++++++
#
# The training logic is hidden in class
print(nn.loss_curve_)

#################################
# Score:

print(f"mean_squared_error={mean_squared_error(y_test, nn.predict(X_test))!r}")

#######################################
# Conversion to ONNX
# ++++++++++++++++++

onx = to_onnx(nn, X_train[:1].astype(numpy.float32), target_opset=15)
plot_onnxs(onx)

weights = list(sorted(get_train_initializer(onx)))
print(weights)

#######################################
# Training graph with forward backward
# ++++++++++++++++++++++++++++++++++++
#
device = "cuda" if get_device().upper() == 'GPU' else 'cpu'

print(f"device={device!r} get_device()={get_device()!r}")

onx = onnx_rename_weights(onx)
train_session = OrtGradientForwardBackwardOptimizer(
    onx,
    device=device,
    verbose=1,