def test_lightgbm_classifier(self): model = LGBMClassifier(n_estimators=3, min_child_samples=1) dump_binary_classification( model, allow_failure= "StrictVersion(onnx.__version__) < StrictVersion('1.3.0')") dump_multiple_classification( model, allow_failure= "StrictVersion(onnx.__version__) < StrictVersion('1.3.0')")
def test_xgb_classifier(self): iris = load_iris() X = iris.data[:, :2] y = iris.target y[y == 2] = 0 xgb = XGBClassifier() xgb.fit(X, y) conv_model = convert_xgboost(xgb, initial_types=[ ('input', FloatTensorType(shape=[1, 'None'])) ]) self.assertTrue(conv_model is not None) dump_binary_classification(xgb, verbose=True)
def test_xgb_classifier_reglog(self): iris = load_iris() X = iris.data[:, :2] y = iris.target y[y == 2] = 0 xgb = XGBClassifier(objective='reg:logistic') xgb.fit(X, y) conv_model = convert_xgboost(xgb, initial_types=[ ('input', FloatTensorType(shape=[1, 2])) ]) self.assertTrue(conv_model is not None) dump_binary_classification(xgb, suffix="RegLog")
def test_gradient_boosting_classifier(self): model = GradientBoostingClassifier(n_estimators=3) dump_binary_classification(model)
def test_extra_trees_classifier(self): model = ExtraTreesClassifier(n_estimators=3) dump_one_class_classification(model) dump_binary_classification(model) dump_multiple_classification(model)
def test_random_forest_classifier(self): model = RandomForestClassifier(n_estimators=3) dump_one_class_classification(model) dump_binary_classification(model) dump_multiple_classification(model)
def test_decision_tree_classifier(self): model = DecisionTreeClassifier() dump_one_class_classification(model) dump_binary_classification(model) dump_multiple_classification(model)