def main(config, output_dir):

    seed = config.get('seed', 0)
    rng = jax.random.PRNGKey(seed)
    tf.random.set_seed(seed)

    if config.get('data_dir'):
        logging.info('data_dir=%s', config.data_dir)
    logging.info('Output dir: %s', output_dir)

    save_checkpoint_path = None
    if config.get('checkpoint_steps'):
        gfile.makedirs(output_dir)
        save_checkpoint_path = os.path.join(output_dir, 'checkpoint.npz')

    # Create an asynchronous multi-metric writer.
    writer = metric_writers.create_default_writer(
        output_dir, just_logging=jax.process_index() > 0)

    # The pool is used to perform misc operations such as logging in async way.
    pool = multiprocessing.pool.ThreadPool()

    def write_note(note):
        if jax.process_index() == 0:
            logging.info('NOTE: %s', note)

    write_note('Initializing...')

    # Verify settings to make sure no checkpoints are accidentally missed.
    if config.get('keep_checkpoint_steps'):
        assert config.get('checkpoint_steps'), 'Specify `checkpoint_steps`.'
        assert config.keep_checkpoint_steps % config.checkpoint_steps == 0, (
            f'`keep_checkpoint_steps` ({config.checkpoint_steps}) should be'
            f'divisible by `checkpoint_steps ({config.checkpoint_steps}).`')

    batch_size = config.batch_size
    batch_size_eval = config.get('batch_size_eval', batch_size)
    if (batch_size % jax.device_count() != 0
            or batch_size_eval % jax.device_count() != 0):
        raise ValueError(
            f'Batch sizes ({batch_size} and {batch_size_eval}) must '
            f'be divisible by device number ({jax.device_count()})')

    local_batch_size = batch_size // jax.process_count()
    local_batch_size_eval = batch_size_eval // jax.process_count()
    logging.info(
        'Global batch size %d on %d hosts results in %d local batch size. '
        'With %d devices per host (%d devices total), that\'s a %d per-device '
        'batch size.', batch_size, jax.process_count(), local_batch_size,
        jax.local_device_count(), jax.device_count(),
        local_batch_size // jax.local_device_count())

    write_note('Initializing train dataset...')
    rng, train_ds_rng = jax.random.split(rng)
    train_ds_rng = jax.random.fold_in(train_ds_rng, jax.process_index())
    train_ds = input_utils.get_data(
        dataset=config.dataset,
        split=config.train_split,
        rng=train_ds_rng,
        process_batch_size=local_batch_size,
        preprocess_fn=preprocess_spec.parse(
            spec=config.pp_train, available_ops=preprocess_utils.all_ops()),
        shuffle_buffer_size=config.shuffle_buffer_size,
        prefetch_size=config.get('prefetch_to_host', 2),
        data_dir=config.get('data_dir'))

    # Start prefetching already.
    train_iter = input_utils.start_input_pipeline(
        train_ds, config.get('prefetch_to_device', 1))

    write_note('Initializing val dataset(s)...')

    def _get_val_split(dataset, split, pp_eval, data_dir=None):
        # We do ceil rounding such that we include the last incomplete batch.
        nval_img = input_utils.get_num_examples(
            dataset,
            split=split,
            process_batch_size=local_batch_size_eval,
            drop_remainder=False,
            data_dir=data_dir)
        val_steps = int(np.ceil(nval_img / batch_size_eval))
        logging.info('Running validation for %d steps for %s, %s', val_steps,
                     dataset, split)

        if isinstance(pp_eval, str):
            pp_eval = preprocess_spec.parse(
                spec=pp_eval, available_ops=preprocess_utils.all_ops())

        val_ds = input_utils.get_data(dataset=dataset,
                                      split=split,
                                      rng=None,
                                      process_batch_size=local_batch_size_eval,
                                      preprocess_fn=pp_eval,
                                      cache=config.get('val_cache', 'batched'),
                                      repeat_after_batching=True,
                                      shuffle=False,
                                      prefetch_size=config.get(
                                          'prefetch_to_host', 2),
                                      drop_remainder=False,
                                      data_dir=data_dir)
        val_iter = input_utils.start_input_pipeline(
            val_ds, config.get('prefetch_to_device', 1))

        return (val_iter, val_steps)

    val_iter_splits = {
        'val':
        _get_val_split(config.dataset,
                       split=config.val_split,
                       pp_eval=config.pp_eval,
                       data_dir=config.get('data_dir'))
    }

    if config.get('eval_on_cifar_10h'):
        cifar10_to_cifar10h_fn = data_uncertainty_utils.create_cifar10_to_cifar10h_fn(
            config.get('data_dir', None))
        preprocess_fn = preprocess_spec.parse(
            spec=config.pp_eval_cifar_10h,
            available_ops=preprocess_utils.all_ops())
        pp_eval = lambda ex: preprocess_fn(cifar10_to_cifar10h_fn(ex))
        val_iter_splits['cifar_10h'] = _get_val_split(
            'cifar10',
            split=config.get('cifar_10h_split') or 'test',
            pp_eval=pp_eval,
            data_dir=config.get('data_dir'))
    elif config.get('eval_on_imagenet_real'):
        imagenet_to_real_fn = data_uncertainty_utils.create_imagenet_to_real_fn(
        )
        preprocess_fn = preprocess_spec.parse(
            spec=config.pp_eval_imagenet_real,
            available_ops=preprocess_utils.all_ops())
        pp_eval = lambda ex: preprocess_fn(imagenet_to_real_fn(ex))
        val_iter_imagenet_real, val_steps = _get_val_split(
            'imagenet2012_real',
            split=config.get('imagenet_real_split') or 'validation',
            pp_eval=pp_eval,
            data_dir=config.get('data_dir'))
        val_iter_splits['imagenet_real'] = (val_iter_imagenet_real, val_steps)

    ood_ds = {}
    if config.get('ood_datasets') and config.get('ood_methods'):
        if config.get(
                'ood_methods'):  #  config.ood_methods is not a empty list
            logging.info('loading OOD dataset = %s', config.get('ood_dataset'))
            ood_ds, ood_ds_names = ood_utils.load_ood_datasets(
                config.dataset,
                config.ood_datasets,
                config.ood_split,
                config.pp_eval,
                config.pp_eval_ood,
                config.ood_methods,
                config.train_split,
                config.get('data_dir'),
                _get_val_split,
            )

    ntrain_img = input_utils.get_num_examples(
        config.dataset,
        split=config.train_split,
        process_batch_size=local_batch_size,
        data_dir=config.get('data_dir'))
    steps_per_epoch = int(ntrain_img / batch_size)

    if config.get('num_epochs'):
        total_steps = int(config.num_epochs * steps_per_epoch)
        assert not config.get(
            'total_steps'), 'Set either num_epochs or total_steps'
    else:
        total_steps = config.total_steps

    logging.info('Total train data points: %d', ntrain_img)
    logging.info(
        'Running for %d steps, that means %f epochs and %d steps per epoch',
        total_steps, total_steps * batch_size / ntrain_img, steps_per_epoch)

    write_note('Initializing model...')
    logging.info('config.model = %s', config.get('model'))
    model = ub.models.vision_transformer(num_classes=config.num_classes,
                                         **config.get('model', {}))

    # We want all parameters to be created in host RAM, not on any device, they'll
    # be sent there later as needed, otherwise we already encountered two
    # situations where we allocate them twice.
    @partial(jax.jit, backend='cpu')
    def init(rng):
        image_size = tuple(train_ds.element_spec['image'].shape[2:])
        logging.info('image_size = %s', image_size)
        dummy_input = jnp.zeros((local_batch_size, ) + image_size, jnp.float32)
        params = flax.core.unfreeze(model.init(rng, dummy_input,
                                               train=False))['params']

        # Set bias in the head to a low value, such that loss is small initially.
        params['head']['bias'] = jnp.full_like(params['head']['bias'],
                                               config.get('init_head_bias', 0))

        # init head kernel to all zeros for fine-tuning
        if config.get('model_init'):
            params['head']['kernel'] = jnp.full_like(params['head']['kernel'],
                                                     0)

        return params

    rng, rng_init = jax.random.split(rng)
    params_cpu = init(rng_init)

    if jax.process_index() == 0:
        num_params = sum(p.size for p in jax.tree_flatten(params_cpu)[0])
        parameter_overview.log_parameter_overview(params_cpu)
        writer.write_scalars(step=0, scalars={'num_params': num_params})

    @partial(jax.pmap, axis_name='batch')
    def evaluation_fn(params, images, labels, mask):
        # Ignore the entries with all zero labels for evaluation.
        mask *= labels.max(axis=1)
        logits, out = model.apply({'params': flax.core.freeze(params)},
                                  images,
                                  train=False)
        label_indices = config.get('label_indices')
        logging.info('!!! mask %s, label_indices %s', mask, label_indices)
        if label_indices:
            logits = logits[:, label_indices]

        # Note that logits and labels are usually of the shape [batch,num_classes].
        # But for OOD data, when num_classes_ood > num_classes_ind, we need to
        # adjust labels to labels[:, :config.num_classes] to match the shape of
        # logits. That is just to avoid shape mismatch. The output losses does not
        # have any meaning for OOD data, because OOD not belong to any IND class.
        losses = getattr(train_utils, config.get('loss', 'sigmoid_xent'))(
            logits=logits,
            labels=labels[:, :(
                len(label_indices) if label_indices else config.num_classes)],
            reduction=False)
        loss = jax.lax.psum(losses * mask, axis_name='batch')

        top1_idx = jnp.argmax(logits, axis=1)
        # Extracts the label at the highest logit index for each image.
        top1_correct = jnp.take_along_axis(labels, top1_idx[:, None],
                                           axis=1)[:, 0]
        ncorrect = jax.lax.psum(top1_correct * mask, axis_name='batch')
        n = jax.lax.psum(mask, axis_name='batch')

        metric_args = jax.lax.all_gather(
            [logits, labels, out['pre_logits'], mask], axis_name='batch')
        return ncorrect, loss, n, metric_args

    @partial(jax.pmap, axis_name='batch')
    def cifar_10h_evaluation_fn(params, images, labels, mask):
        logits, out = model.apply({'params': flax.core.freeze(params)},
                                  images,
                                  train=False)
        label_indices = config.get('label_indices')
        if label_indices:
            logits = logits[:, label_indices]

        losses = getattr(train_utils,
                         config.get('loss', 'softmax_xent'))(logits=logits,
                                                             labels=labels,
                                                             reduction=False)
        loss = jax.lax.psum(losses, axis_name='batch')

        top1_idx = jnp.argmax(logits, axis=1)
        # Extracts the label at the highest logit index for each image.
        one_hot_labels = jnp.eye(10)[jnp.argmax(labels, axis=1)]

        top1_correct = jnp.take_along_axis(one_hot_labels,
                                           top1_idx[:, None],
                                           axis=1)[:, 0]
        ncorrect = jax.lax.psum(top1_correct, axis_name='batch')
        n = jax.lax.psum(one_hot_labels, axis_name='batch')

        metric_args = jax.lax.all_gather(
            [logits, labels, out['pre_logits'], mask], axis_name='batch')
        return ncorrect, loss, n, metric_args

    # Setup function for computing representation.
    @partial(jax.pmap, axis_name='batch')
    def representation_fn(params, images, labels, mask):
        _, outputs = model.apply({'params': flax.core.freeze(params)},
                                 images,
                                 train=False)
        representation = outputs[config.fewshot.representation_layer]
        representation = jax.lax.all_gather(representation, 'batch')
        labels = jax.lax.all_gather(labels, 'batch')
        mask = jax.lax.all_gather(mask, 'batch')
        return representation, labels, mask

    # Load the optimizer from flax.
    opt_name = config.get('optim_name')
    write_note(f'Initializing {opt_name} optimizer...')
    opt_def = getattr(flax.optim, opt_name)(**config.get('optim', {}))

    # We jit this, such that the arrays that are created are created on the same
    # device as the input is, in this case the CPU. Else they'd be on device[0].
    opt_cpu = jax.jit(opt_def.create)(params_cpu)

    weight_decay_rules = config.get('weight_decay', []) or []
    rescale_value = config.lr.base if config.get(
        'weight_decay_decouple') else 1.
    weight_decay_fn = train_utils.get_weight_decay_fn(
        weight_decay_rules=weight_decay_rules, rescale_value=rescale_value)

    @partial(jax.pmap, axis_name='batch', donate_argnums=(0, ))
    def update_fn(opt, lr, images, labels, rng):
        """Update step."""

        measurements = {}

        # Get device-specific loss rng.
        rng, rng_model = jax.random.split(rng, 2)
        rng_model_local = jax.random.fold_in(rng_model,
                                             jax.lax.axis_index('batch'))

        def loss_fn(params, images, labels):
            logits, _ = model.apply({'params': flax.core.freeze(params)},
                                    images,
                                    train=True,
                                    rngs={'dropout': rng_model_local})
            label_indices = config.get('label_indices')
            if label_indices:
                logits = logits[:, label_indices]
            return getattr(train_utils,
                           config.get('loss', 'sigmoid_xent'))(logits=logits,
                                                               labels=labels)

        # Implementation considerations compared and summarized at
        # https://docs.google.com/document/d/1g3kMEvqu1DOawaflKNyUsIoQ4yIVEoyE5ZlIPkIl4Lc/edit?hl=en#
        l, g = train_utils.accumulate_gradient(jax.value_and_grad(loss_fn),
                                               opt.target, images, labels,
                                               config.get('grad_accum_steps'))
        l, g = jax.lax.pmean((l, g), axis_name='batch')

        # Log the gradient norm only if we need to compute it anyways (clipping)
        # or if we don't use grad_accum_steps, as they interact badly.
        if config.get('grad_accum_steps',
                      1) == 1 or config.get('grad_clip_norm'):
            grads, _ = jax.tree_flatten(g)
            l2_g = jnp.sqrt(sum([jnp.vdot(p, p) for p in grads]))
            measurements['l2_grads'] = l2_g

        # Optionally resize the global gradient to a maximum norm. We found this
        # useful in some cases across optimizers, hence it's in the main loop.
        if config.get('grad_clip_norm'):
            g_factor = jnp.minimum(1.0, config.grad_clip_norm / l2_g)
            g = jax.tree_util.tree_map(lambda p: g_factor * p, g)
        opt = opt.apply_gradient(g, learning_rate=lr)

        opt = opt.replace(target=weight_decay_fn(opt.target, lr))

        params, _ = jax.tree_flatten(opt.target)
        measurements['l2_params'] = jnp.sqrt(
            sum([jnp.vdot(p, p) for p in params]))

        return opt, l, rng, measurements

    rng, train_loop_rngs = jax.random.split(rng)
    reint_params = ('head/kernel', 'head/bias')
    if config.get('only_eval', False) or not config.get('reint_head', True):
        reint_params = []
    checkpoint_data = checkpoint_utils.maybe_load_checkpoint(
        train_loop_rngs=train_loop_rngs,
        save_checkpoint_path=save_checkpoint_path,
        init_optimizer=opt_cpu,
        init_params=params_cpu,
        init_fixed_model_states=None,
        default_reinit_params=reint_params,
        config=config,
    )
    train_loop_rngs = checkpoint_data.train_loop_rngs
    opt_cpu = checkpoint_data.optimizer
    accumulated_train_time = checkpoint_data.accumulated_train_time

    write_note('Adapting the checkpoint model...')
    adapted_params = checkpoint_utils.adapt_upstream_architecture(
        init_params=params_cpu, loaded_params=opt_cpu.target)
    opt_cpu = opt_cpu.replace(target=adapted_params)

    write_note('Kicking off misc stuff...')
    first_step = int(opt_cpu.state.step)  # Might be a DeviceArray type.
    if first_step == 0 and jax.process_index() == 0:
        writer.write_hparams(dict(config))
    chrono = train_utils.Chrono(first_step, total_steps, batch_size,
                                accumulated_train_time)
    # Note: switch to ProfileAllHosts() if you need to profile all hosts.
    # (Xprof data become much larger and take longer to load for analysis)
    profiler = periodic_actions.Profile(
        # Create profile after every restart to analyze pre-emption related
        # problems and assure we get similar performance in every run.
        logdir=output_dir,
        first_profile=first_step + 10)

    # Prepare the learning-rate and pre-fetch it to device to avoid delays.
    lr_fn = train_utils.create_learning_rate_schedule(total_steps,
                                                      **config.get('lr', {}))
    # TODO(dusenberrymw): According to flax docs, prefetching shouldn't be
    # necessary for TPUs.
    lr_iter = train_utils.prefetch_scalar(map(lr_fn, range(total_steps)),
                                          config.get('prefetch_to_device', 1))

    write_note(f'Replicating...\n{chrono.note}')
    opt_repl = flax_utils.replicate(opt_cpu)

    write_note(f'Initializing few-shotters...\n{chrono.note}')
    fewshotter = None
    if 'fewshot' in config and fewshot is not None:
        fewshotter = fewshot.FewShotEvaluator(
            representation_fn, config.fewshot,
            config.fewshot.get('batch_size') or batch_size_eval)

    checkpoint_writer = None

    # Note: we return the train loss, val loss, and fewshot best l2s for use in
    # reproducibility unit tests.
    train_loss = -jnp.inf
    val_loss = {val_name: -jnp.inf for val_name, _ in val_iter_splits.items()}
    fewshot_results = {'dummy': {(0, 1): -jnp.inf}}

    write_note(f'First step compilations...\n{chrono.note}')
    logging.info('first_step = %s', first_step)
    # Advance the iterators if we are restarting from an earlier checkpoint.
    # TODO(dusenberrymw): Look into checkpointing dataset state instead.
    if first_step > 0:
        write_note('Advancing iterators after resuming from a checkpoint...')
        lr_iter = itertools.islice(lr_iter, first_step, None)
        train_iter = itertools.islice(train_iter, first_step, None)
        # NOTE: Validation eval is only run on certain steps, so determine how many
        # times it was run previously.
        num_val_runs = sum(
            map(
                lambda i: train_utils.itstime(i, config.log_eval_steps,
                                              total_steps),
                range(1, first_step + 1)))
        for val_name, (val_iter, val_steps) in val_iter_splits.items():
            val_iter = itertools.islice(val_iter, num_val_runs * val_steps,
                                        None)
            val_iter_splits[val_name] = (val_iter, val_steps)

    # Using a python integer for step here, because opt.state.step is allocated
    # on TPU during replication.
    for step, train_batch, lr_repl in zip(
            range(first_step + 1, total_steps + 1), train_iter, lr_iter):

        with jax.profiler.TraceAnnotation('train_step', step_num=step, _r=1):
            if not config.get('only_eval', False):
                opt_repl, loss_value, train_loop_rngs, extra_measurements = update_fn(
                    opt_repl,
                    lr_repl,
                    train_batch['image'],
                    train_batch['labels'],
                    rng=train_loop_rngs)

        if jax.process_index() == 0:
            profiler(step)

        # Checkpoint saving
        if not config.get('only_eval', False) and train_utils.itstime(
                step, config.get('checkpoint_steps'), total_steps, process=0):
            write_note('Checkpointing...')
            chrono.pause()
            train_utils.checkpointing_timeout(
                checkpoint_writer, config.get('checkpoint_timeout', 1))
            accumulated_train_time = chrono.accum_train_time
            # We need to transfer the weights over now or else we risk keeping them
            # alive while they'll be updated in a future step, creating hard to debug
            # memory errors (see b/160593526). Also, takes device 0's params only.
            opt_cpu = jax.tree_util.tree_map(lambda x: np.array(x[0]),
                                             opt_repl)

            # Check whether we want to keep a copy of the current checkpoint.
            copy_step = None
            if train_utils.itstime(step, config.get('keep_checkpoint_steps'),
                                   total_steps):
                write_note('Keeping a checkpoint copy...')
                copy_step = step

            # Checkpoint should be a nested dictionary or FLAX datataclasses from
            # `flax.struct`. Both can be present in a checkpoint.
            checkpoint_data = checkpoint_utils.CheckpointData(
                train_loop_rngs=train_loop_rngs,
                optimizer=opt_cpu,
                accumulated_train_time=accumulated_train_time)

            checkpoint_writer = pool.apply_async(
                checkpoint_utils.checkpoint_trained_model,
                (checkpoint_data, save_checkpoint_path, copy_step))
            chrono.resume()

        # Report training progress
        if not config.get('only_eval', False) and train_utils.itstime(
                step, config.log_training_steps, total_steps, process=0):
            write_note('Reporting training progress...')
            train_loss = loss_value[
                0]  # Keep to return for reproducibility tests.
            timing_measurements, note = chrono.tick(step)
            write_note(note)
            train_measurements = {}
            train_measurements.update({
                'learning_rate': lr_repl[0],
                'training_loss': train_loss,
            })
            train_measurements.update(
                flax.jax_utils.unreplicate(extra_measurements))
            train_measurements.update(timing_measurements)
            writer.write_scalars(step, train_measurements)

        # Report validation performance
        if train_utils.itstime(step, config.log_eval_steps, total_steps):
            write_note('Evaluating on the validation set...')
            chrono.pause()
            for val_name, (val_iter, val_steps) in val_iter_splits.items():
                # Sets up evaluation metrics.
                ece_num_bins = config.get('ece_num_bins', 15)
                auc_num_bins = config.get('auc_num_bins', 1000)
                ece = rm.metrics.ExpectedCalibrationError(
                    num_bins=ece_num_bins)
                calib_auc = rm.metrics.CalibrationAUC(
                    correct_pred_as_pos_label=False)
                oc_auc_0_5 = rm.metrics.OracleCollaborativeAUC(
                    oracle_fraction=0.005, num_bins=auc_num_bins)
                oc_auc_1 = rm.metrics.OracleCollaborativeAUC(
                    oracle_fraction=0.01, num_bins=auc_num_bins)
                oc_auc_2 = rm.metrics.OracleCollaborativeAUC(
                    oracle_fraction=0.02, num_bins=auc_num_bins)
                oc_auc_5 = rm.metrics.OracleCollaborativeAUC(
                    oracle_fraction=0.05, num_bins=auc_num_bins)
                label_diversity = tf.keras.metrics.Mean()
                sample_diversity = tf.keras.metrics.Mean()
                ged = tf.keras.metrics.Mean()

                # Runs evaluation loop.
                ncorrect, loss, nseen = 0, 0, 0
                for _, batch in zip(range(val_steps), val_iter):
                    if val_name == 'cifar_10h':
                        batch_ncorrect, batch_losses, batch_n, batch_metric_args = (
                            cifar_10h_evaluation_fn(opt_repl.target,
                                                    batch['image'],
                                                    batch['labels'],
                                                    batch['mask']))
                    else:
                        batch_ncorrect, batch_losses, batch_n, batch_metric_args = (
                            evaluation_fn(opt_repl.target, batch['image'],
                                          batch['labels'], batch['mask']))
                    # All results are a replicated array shaped as follows:
                    # (local_devices, per_device_batch_size, elem_shape...)
                    # with each local device's entry being identical as they got psum'd.
                    # So let's just take the first one to the host as numpy.
                    ncorrect += np.sum(np.array(batch_ncorrect[0]))
                    loss += np.sum(np.array(batch_losses[0]))
                    nseen += np.sum(np.array(batch_n[0]))
                    if config.get('loss', 'sigmoid_xent') != 'sigmoid_xent':
                        # Here we parse batch_metric_args to compute uncertainty metrics.
                        # (e.g., ECE or Calibration AUC).
                        logits, labels, _, masks = batch_metric_args
                        masks = np.array(masks[0], dtype=np.bool)
                        logits = np.array(logits[0])
                        probs = jax.nn.softmax(logits)
                        # From one-hot to integer labels, as required by ECE.
                        int_labels = np.argmax(np.array(labels[0]), axis=-1)
                        int_preds = np.argmax(logits, axis=-1)
                        confidence = np.max(probs, axis=-1)
                        for p, c, l, d, m, label in zip(
                                probs, confidence, int_labels, int_preds,
                                masks, labels[0]):
                            ece.add_batch(p[m, :], label=l[m])
                            calib_auc.add_batch(d[m],
                                                label=l[m],
                                                confidence=c[m])
                            # TODO(jereliu): Extend to support soft multi-class probabilities.
                            oc_auc_0_5.add_batch(d[m],
                                                 label=l[m],
                                                 custom_binning_score=c[m])
                            oc_auc_1.add_batch(d[m],
                                               label=l[m],
                                               custom_binning_score=c[m])
                            oc_auc_2.add_batch(d[m],
                                               label=l[m],
                                               custom_binning_score=c[m])
                            oc_auc_5.add_batch(d[m],
                                               label=l[m],
                                               custom_binning_score=c[m])

                            if val_name == 'cifar_10h' or val_name == 'imagenet_real':
                                batch_label_diversity, batch_sample_diversity, batch_ged = data_uncertainty_utils.generalized_energy_distance(
                                    label[m], p[m, :], config.num_classes)
                                label_diversity.update_state(
                                    batch_label_diversity)
                                sample_diversity.update_state(
                                    batch_sample_diversity)
                                ged.update_state(batch_ged)

                val_loss[
                    val_name] = loss / nseen  # Keep for reproducibility tests.
                val_measurements = {
                    f'{val_name}_prec@1': ncorrect / nseen,
                    f'{val_name}_loss': val_loss[val_name],
                }
                if config.get('loss', 'sigmoid_xent') != 'sigmoid_xent':
                    val_measurements[f'{val_name}_ece'] = ece.result()['ece']
                    val_measurements[
                        f'{val_name}_calib_auc'] = calib_auc.result(
                        )['calibration_auc']
                    val_measurements[
                        f'{val_name}_oc_auc_0.5%'] = oc_auc_0_5.result(
                        )['collaborative_auc']
                    val_measurements[
                        f'{val_name}_oc_auc_1%'] = oc_auc_1.result(
                        )['collaborative_auc']
                    val_measurements[
                        f'{val_name}_oc_auc_2%'] = oc_auc_2.result(
                        )['collaborative_auc']
                    val_measurements[
                        f'{val_name}_oc_auc_5%'] = oc_auc_5.result(
                        )['collaborative_auc']
                writer.write_scalars(step, val_measurements)

                if val_name == 'cifar_10h' or val_name == 'imagenet_real':
                    cifar_10h_measurements = {
                        f'{val_name}_label_diversity':
                        label_diversity.result(),
                        f'{val_name}_sample_diversity':
                        sample_diversity.result(),
                        f'{val_name}_ged': ged.result(),
                    }
                    writer.write_scalars(step, cifar_10h_measurements)

            # OOD eval
            # Entries in the ood_ds dict include:
            # (ind_dataset, ood_dataset1, ood_dataset2, ...).
            # OOD metrics are computed using ind_dataset paired with each of the
            # ood_dataset. When Mahalanobis distance method is applied, train_ind_ds
            # is also included in the ood_ds.
            if ood_ds and config.ood_methods:
                ood_measurements = ood_utils.eval_ood_metrics(
                    ood_ds, ood_ds_names, config.ood_methods, evaluation_fn,
                    opt_repl)
                writer.write_scalars(step, ood_measurements)
            chrono.resume()

        if 'fewshot' in config and fewshotter is not None:
            # Compute few-shot on-the-fly evaluation.
            if train_utils.itstime(step, config.fewshot.log_steps,
                                   total_steps):
                chrono.pause()
                write_note(f'Few-shot evaluation...\n{chrono.note}')
                # Keep `results` to return for reproducibility tests.
                fewshot_results, best_l2 = fewshotter.run_all(
                    opt_repl.target, config.fewshot.datasets)

                # TODO(dusenberrymw): Remove this once fewshot.py is updated.
                def make_writer_measure_fn(step):
                    def writer_measure(name, value):
                        writer.write_scalars(step, {name: value})

                    return writer_measure

                fewshotter.walk_results(make_writer_measure_fn(step),
                                        fewshot_results, best_l2)
                chrono.resume()

        # End of step.
        if config.get('testing_failure_step'):
            # Break early to simulate infra failures in test cases.
            if config.testing_failure_step == step:
                break

    write_note(f'Done!\n{chrono.note}')
    pool.close()
    pool.join()
    writer.close()

    # Return final training loss, validation loss, and fewshot results for
    # reproducibility test cases.
    return train_loss, val_loss, fewshot_results
示例#2
0
def main(config, output_dir):

    seed = config.get('seed', 0)
    tf.random.set_seed(seed)

    if config.get('data_dir'):
        logging.info('data_dir=%s', config.data_dir)
    logging.info('Output dir: %s', output_dir)
    tf.io.gfile.makedirs(output_dir)

    # Create an asynchronous multi-metric writer.
    writer = metric_writers.create_default_writer(
        output_dir, just_logging=jax.process_index() > 0)

    # The pool is used to perform misc operations such as logging in async way.
    pool = multiprocessing.pool.ThreadPool()

    def write_note(note):
        if jax.process_index() == 0:
            logging.info('NOTE: %s', note)

    write_note('Initializing...')

    batch_size = config.batch_size
    batch_size_eval = config.get('batch_size_eval', batch_size)
    if (batch_size % jax.device_count() != 0
            or batch_size_eval % jax.device_count() != 0):
        raise ValueError(
            f'Batch sizes ({batch_size} and {batch_size_eval}) must '
            f'be divisible by device number ({jax.device_count()})')

    local_batch_size = batch_size // jax.process_count()
    local_batch_size_eval = batch_size_eval // jax.process_count()
    logging.info(
        'Global batch size %d on %d hosts results in %d local batch size. '
        'With %d devices per host (%d devices total), that\'s a %d per-device '
        'batch size.', batch_size, jax.process_count(), local_batch_size,
        jax.local_device_count(), jax.device_count(),
        local_batch_size // jax.local_device_count())

    write_note('Initializing val dataset(s)...')

    def _get_val_split(dataset, split, pp_eval, data_dir=None):
        # We do ceil rounding such that we include the last incomplete batch.
        nval_img = input_utils.get_num_examples(
            dataset,
            split=split,
            process_batch_size=local_batch_size_eval,
            drop_remainder=False,
            data_dir=data_dir)
        val_steps = int(np.ceil(nval_img / batch_size_eval))
        logging.info('Running validation for %d steps for %s, %s', val_steps,
                     dataset, split)

        if isinstance(pp_eval, str):
            pp_eval = preprocess_spec.parse(
                spec=pp_eval, available_ops=preprocess_utils.all_ops())

        val_ds = input_utils.get_data(dataset=dataset,
                                      split=split,
                                      rng=None,
                                      process_batch_size=local_batch_size_eval,
                                      preprocess_fn=pp_eval,
                                      cache=config.get('val_cache', 'batched'),
                                      num_epochs=1,
                                      repeat_after_batching=True,
                                      shuffle=False,
                                      prefetch_size=config.get(
                                          'prefetch_to_host', 2),
                                      drop_remainder=False,
                                      data_dir=data_dir)

        return val_ds

    val_ds_splits = {
        'val':
        _get_val_split(config.dataset,
                       split=config.val_split,
                       pp_eval=config.pp_eval,
                       data_dir=config.get('data_dir'))
    }

    if config.get('test_split'):
        val_ds_splits.update({
            'test':
            _get_val_split(config.dataset,
                           split=config.test_split,
                           pp_eval=config.pp_eval,
                           data_dir=config.get('data_dir'))
        })

    if config.get('eval_on_cifar_10h'):
        cifar10_to_cifar10h_fn = data_uncertainty_utils.create_cifar10_to_cifar10h_fn(
            config.get('data_dir', None))
        preprocess_fn = preprocess_spec.parse(
            spec=config.pp_eval_cifar_10h,
            available_ops=preprocess_utils.all_ops())
        pp_eval = lambda ex: preprocess_fn(cifar10_to_cifar10h_fn(ex))
        val_ds_splits['cifar_10h'] = _get_val_split(
            'cifar10',
            split=config.get('cifar_10h_split') or 'test',
            pp_eval=pp_eval,
            data_dir=config.get('data_dir'))
    elif config.get('eval_on_imagenet_real'):
        imagenet_to_real_fn = data_uncertainty_utils.create_imagenet_to_real_fn(
        )
        preprocess_fn = preprocess_spec.parse(
            spec=config.pp_eval_imagenet_real,
            available_ops=preprocess_utils.all_ops())
        pp_eval = lambda ex: preprocess_fn(imagenet_to_real_fn(ex))
        val_ds_splits['imagenet_real'] = _get_val_split(
            'imagenet2012_real',
            split=config.get('imagenet_real_split') or 'validation',
            pp_eval=pp_eval,
            data_dir=config.get('data_dir'))

    ood_ds = {}
    if config.get('ood_datasets') and config.get('ood_methods'):
        if config.get(
                'ood_methods'):  #  config.ood_methods is not a empty list
            logging.info('loading OOD dataset = %s',
                         config.get('ood_datasets'))
            ood_ds, ood_ds_names = ood_utils.load_ood_datasets(
                config.dataset,
                config.ood_datasets,
                config.ood_split,
                config.pp_eval,
                config.pp_eval_ood,
                config.ood_methods,
                config.train_split,
                config.get('data_dir'),
                _get_val_split,
            )

    write_note('Initializing model...')
    logging.info('config.model = %s', config.model)
    model = ub.models.vision_transformer(num_classes=config.num_classes,
                                         **config.model)

    ensemble_pred_fn = functools.partial(ensemble_prediction_fn, model.apply)

    @functools.partial(jax.pmap, axis_name='batch')
    def evaluation_fn(params, images, labels, mask):
        # params is a dict of the form:
        #   {'model_1': params_model_1, 'model_2': params_model_2, ...}
        # Ignore the entries with all zero labels for evaluation.
        mask *= labels.max(axis=1)
        loss_as_str = config.get('loss', 'sigmoid_xent')
        ens_logits, ens_prelogits = ensemble_pred_fn(params, images,
                                                     loss_as_str)

        label_indices = config.get('label_indices')
        logging.info('!!! mask %s, label_indices %s', mask, label_indices)
        if label_indices:
            ens_logits = ens_logits[:, label_indices]

        # Note that logits and labels are usually of the shape [batch,num_classes].
        # But for OOD data, when num_classes_ood > num_classes_ind, we need to
        # adjust labels to labels[:, :config.num_classes] to match the shape of
        # logits. That is just to avoid shape mismatch. The output losses does not
        # have any meaning for OOD data, because OOD not belong to any IND class.
        losses = getattr(train_utils, loss_as_str)(
            logits=ens_logits,
            labels=labels[:, :(
                len(label_indices) if label_indices else config.num_classes)],
            reduction=False)
        loss = jax.lax.psum(losses * mask, axis_name='batch')

        top1_idx = jnp.argmax(ens_logits, axis=1)
        # Extracts the label at the highest logit index for each image.
        top1_correct = jnp.take_along_axis(labels, top1_idx[:, None],
                                           axis=1)[:, 0]
        ncorrect = jax.lax.psum(top1_correct * mask, axis_name='batch')
        n = jax.lax.psum(mask, axis_name='batch')

        metric_args = jax.lax.all_gather(
            [ens_logits, labels, ens_prelogits, mask], axis_name='batch')
        return ncorrect, loss, n, metric_args

    @functools.partial(jax.pmap, axis_name='batch')
    def cifar_10h_evaluation_fn(params, images, labels, mask):
        loss_as_str = config.get('loss', 'softmax_xent')
        ens_logits, ens_prelogits = ensemble_pred_fn(params, images,
                                                     loss_as_str)
        label_indices = config.get('label_indices')
        if label_indices:
            ens_logits = ens_logits[:, label_indices]

        losses = getattr(train_utils, loss_as_str)(logits=ens_logits,
                                                   labels=labels,
                                                   reduction=False)
        loss = jax.lax.psum(losses, axis_name='batch')

        top1_idx = jnp.argmax(ens_logits, axis=1)
        # Extracts the label at the highest logit index for each image.
        one_hot_labels = jnp.eye(10)[jnp.argmax(labels, axis=1)]

        top1_correct = jnp.take_along_axis(one_hot_labels,
                                           top1_idx[:, None],
                                           axis=1)[:, 0]
        ncorrect = jax.lax.psum(top1_correct, axis_name='batch')
        n = jax.lax.psum(one_hot_labels, axis_name='batch')

        metric_args = jax.lax.all_gather(
            [ens_logits, labels, ens_prelogits, mask], axis_name='batch')
        return ncorrect, loss, n, metric_args

    # Setup function for computing representation.
    @functools.partial(jax.pmap, axis_name='batch')
    def representation_fn(params, images, labels, mask):
        # Return shape [batch_size, representation_size * ensemble_size]. During
        # few-shot eval, a single linear regressor is applied over all dimensions.
        representation = []
        for p in params.values():
            _, outputs = model.apply({'params': flax.core.freeze(p)},
                                     images,
                                     train=False)
            representation += [outputs[config.fewshot.representation_layer]]
        representation = jnp.concatenate(representation, axis=1)
        representation = jax.lax.all_gather(representation, 'batch')
        labels = jax.lax.all_gather(labels, 'batch')
        mask = jax.lax.all_gather(mask, 'batch')
        return representation, labels, mask

    write_note('Load checkpoints...')
    ensemble_params = load_checkpoints(config)

    write_note('Replicating...')
    ensemble_params = flax.jax_utils.replicate(ensemble_params)

    if jax.process_index() == 0:
        writer.write_hparams(dict(config))

    write_note('Initializing few-shotters...')
    fewshotter = None
    if 'fewshot' in config and fewshot is not None:
        fewshotter = fewshot.FewShotEvaluator(
            representation_fn, config.fewshot,
            config.fewshot.get('batch_size') or batch_size_eval)

    # Note: we return the train loss, val loss, and fewshot best l2s for use in
    # reproducibility unit tests.
    val_loss = {val_name: -jnp.inf for val_name, _ in val_ds_splits.items()}
    fewshot_results = {'dummy': {(0, 1): -jnp.inf}}
    step = 1

    # Report validation performance.
    write_note('Evaluating on the validation set...')
    for val_name, val_ds in val_ds_splits.items():
        # Sets up evaluation metrics.
        ece_num_bins = config.get('ece_num_bins', 15)
        auc_num_bins = config.get('auc_num_bins', 1000)
        ece = rm.metrics.ExpectedCalibrationError(num_bins=ece_num_bins)
        calib_auc = rm.metrics.CalibrationAUC(correct_pred_as_pos_label=False)
        oc_auc_0_5 = rm.metrics.OracleCollaborativeAUC(oracle_fraction=0.005,
                                                       num_bins=auc_num_bins)
        oc_auc_1 = rm.metrics.OracleCollaborativeAUC(oracle_fraction=0.01,
                                                     num_bins=auc_num_bins)
        oc_auc_2 = rm.metrics.OracleCollaborativeAUC(oracle_fraction=0.02,
                                                     num_bins=auc_num_bins)
        oc_auc_5 = rm.metrics.OracleCollaborativeAUC(oracle_fraction=0.05,
                                                     num_bins=auc_num_bins)
        label_diversity = tf.keras.metrics.Mean()
        sample_diversity = tf.keras.metrics.Mean()
        ged = tf.keras.metrics.Mean()

        # Runs evaluation loop.
        val_iter = input_utils.start_input_pipeline(
            val_ds, config.get('prefetch_to_device', 1))
        ncorrect, loss, nseen = 0, 0, 0
        for batch in val_iter:
            if val_name == 'cifar_10h':
                batch_ncorrect, batch_losses, batch_n, batch_metric_args = (
                    cifar_10h_evaluation_fn(ensemble_params, batch['image'],
                                            batch['labels'], batch['mask']))
            else:
                batch_ncorrect, batch_losses, batch_n, batch_metric_args = (
                    evaluation_fn(ensemble_params, batch['image'],
                                  batch['labels'], batch['mask']))
            # All results are a replicated array shaped as follows:
            # (local_devices, per_device_batch_size, elem_shape...)
            # with each local device's entry being identical as they got psum'd.
            # So let's just take the first one to the host as numpy.
            ncorrect += np.sum(np.array(batch_ncorrect[0]))
            loss += np.sum(np.array(batch_losses[0]))
            nseen += np.sum(np.array(batch_n[0]))
            if config.get('loss', 'sigmoid_xent') != 'sigmoid_xent':
                # Here we parse batch_metric_args to compute uncertainty metrics.
                # (e.g., ECE or Calibration AUC).
                logits, labels, _, masks = batch_metric_args
                masks = np.array(masks[0], dtype=np.bool)
                logits = np.array(logits[0])
                probs = jax.nn.softmax(logits)
                # From one-hot to integer labels, as required by ECE.
                int_labels = np.argmax(np.array(labels[0]), axis=-1)
                int_preds = np.argmax(logits, axis=-1)
                confidence = np.max(probs, axis=-1)
                for p, c, l, d, m, label in zip(probs, confidence, int_labels,
                                                int_preds, masks, labels[0]):
                    ece.add_batch(p[m, :], label=l[m])
                    calib_auc.add_batch(d[m], label=l[m], confidence=c[m])
                    # TODO(jereliu): Extend to support soft multi-class probabilities.
                    oc_auc_0_5.add_batch(d[m],
                                         label=l[m],
                                         custom_binning_score=c[m])
                    oc_auc_1.add_batch(d[m],
                                       label=l[m],
                                       custom_binning_score=c[m])
                    oc_auc_2.add_batch(d[m],
                                       label=l[m],
                                       custom_binning_score=c[m])
                    oc_auc_5.add_batch(d[m],
                                       label=l[m],
                                       custom_binning_score=c[m])

                    if val_name == 'cifar_10h' or val_name == 'imagenet_real':
                        batch_label_diversity, batch_sample_diversity, batch_ged = data_uncertainty_utils.generalized_energy_distance(
                            label[m], p[m, :], config.num_classes)
                        label_diversity.update_state(batch_label_diversity)
                        sample_diversity.update_state(batch_sample_diversity)
                        ged.update_state(batch_ged)

        val_loss[val_name] = loss / nseen  # Keep for reproducibility tests.
        val_measurements = {
            f'{val_name}_prec@1': ncorrect / nseen,
            f'{val_name}_loss': val_loss[val_name],
        }
        if config.get('loss', 'sigmoid_xent') != 'sigmoid_xent':
            val_measurements[f'{val_name}_ece'] = ece.result()['ece']
            val_measurements[f'{val_name}_calib_auc'] = calib_auc.result(
            )['calibration_auc']
            val_measurements[f'{val_name}_oc_auc_0.5%'] = oc_auc_0_5.result(
            )['collaborative_auc']
            val_measurements[f'{val_name}_oc_auc_1%'] = oc_auc_1.result(
            )['collaborative_auc']
            val_measurements[f'{val_name}_oc_auc_2%'] = oc_auc_2.result(
            )['collaborative_auc']
            val_measurements[f'{val_name}_oc_auc_5%'] = oc_auc_5.result(
            )['collaborative_auc']
        writer.write_scalars(step, val_measurements)

        if val_name == 'cifar_10h' or val_name == 'imagenet_real':
            cifar_10h_measurements = {
                f'{val_name}_label_diversity': label_diversity.result(),
                f'{val_name}_sample_diversity': sample_diversity.result(),
                f'{val_name}_ged': ged.result(),
            }
            writer.write_scalars(step, cifar_10h_measurements)

    # OOD eval
    # Entries in the ood_ds dict include:
    # (ind_dataset, ood_dataset1, ood_dataset2, ...).
    # OOD metrics are computed using ind_dataset paired with each of the
    # ood_dataset. When Mahalanobis distance method is applied, train_ind_ds
    # is also included in the ood_ds.
    if ood_ds and config.ood_methods:
        ood_measurements = ood_utils.eval_ood_metrics(ood_ds,
                                                      ood_ds_names,
                                                      config.ood_methods,
                                                      evaluation_fn,
                                                      ensemble_params,
                                                      n_prefetch=config.get(
                                                          'prefetch_to_device',
                                                          1))
        writer.write_scalars(step, ood_measurements)

    if 'fewshot' in config and fewshotter is not None:
        # Compute few-shot on-the-fly evaluation.
        write_note('Few-shot evaluation...')
        # Keep `results` to return for reproducibility tests.
        fewshot_results, best_l2 = fewshotter.run_all(ensemble_params,
                                                      config.fewshot.datasets)

        # TODO(dusenberrymw): Remove this once fewshot.py is updated.
        def make_writer_measure_fn(step):
            def writer_measure(name, value):
                writer.write_scalars(step, {name: value})

            return writer_measure

        fewshotter.walk_results(make_writer_measure_fn(step), fewshot_results,
                                best_l2)

    write_note('Done!')
    pool.close()
    pool.join()
    writer.close()

    # Return final training loss, validation loss, and fewshot results for
    # reproducibility test cases.
    return val_loss, fewshot_results