示例#1
0
def plot_stuff(xe, ye, H, cmap, grid, shelf_depth, ax, levels=np.linspace(0,100,11), extend='max'):
    '''
    Do the main plotting stuff.
    '''

    XE, YE = np.meshgrid(op.resize(xe, 0), op.resize(ye, 0))

    # Try with pcolor too
    #pdb.set_trace()
    mappable = ax.contourf(XE, YE, H, cmap=cmap, levels=levels, extend=extend)
    ax.contour(grid['xr'], grid['yr'], grid['h'], [shelf_depth], colors='0.1', linewidth=3)

    return mappable
            tracpy.plotting.background(grid=grid, ax=ax, mers=np.arange(-100, -80, 2))
            ax.set_title('Winter')
            Files = glob.glob('tracks/20??-0[1,2]-*gc.nc')
        elif i==1:
            tracpy.plotting.background(grid=grid, ax=ax, parslabels=[0,0,0,0], mers=np.arange(-100, -80, 2))
            ax.set_title('Summer')
            Files = glob.glob('tracks/20??-0[7,8]-*gc.nc')

        if not os.path.exists(fname):
            for File in Files:
                # print File
                d = netCDF.Dataset(File)
                # pdb.set_trace()
                U = d.variables['U'][:]; V = d.variables['V'][:]
                d.close()
                Stemp = np.sqrt(op.resize(U, 1)**2 + op.resize(V, 0)**2)
                S[i,:,:] = S[i,:,:] + Stemp

            # locator = ticker.MaxNLocator(11)
            # locator.create_dummy_axis()
            # locator.set_bounds(0, 1) 
            # levels = locator()
            # extend = 'max'
            # H = H/Hmax
            Smax = 1.

        else:
            d = np.load(fname); S = d['S']; d.close()
            Smax = S.max()

        if howplot=='log':
示例#3
0
# w = netCDF.Dataset('/atch/raid1/zhangxq/Projects/narr_txla/txla_blk_narr_' + str(year) + '.nc')
# Wind time period to use
unitsWind = (w.variables['time'].units).replace('/','-')
datesWind = netCDF.num2date(w.variables['time'][:], unitsWind)
# datesWind = datesModel
wdx = 25; wdy = 40 # in indices
##

## River forcing ##
r1 = netCDF.Dataset('/rho/raid/home/kthyng/txla/TXLA_river_4dyes_2012.nc') # use for through 2011
r2 = netCDF.Dataset('/rho/raid/home/kthyng/txla/TXLA_river_4dyes_2012_2014.nc') # use for 2012-2014
# River timing
tr1 = r1.variables['river_time']
tunitsr1 = tr1.units
# interpolate times for this data file since at the 12 hours mark instead of beginning of the day
tr1 = op.resize(tr1, 0)
datesr1 = netCDF.num2date(tr1[:], tunitsr1)
tr2 = r2.variables['river_time']
datesr2 = netCDF.num2date(tr2[:], tr2.units)
# all of river input
Q1 = np.abs(r1.variables['river_transport'][:]).sum(axis=1)*2.0/3.0
# interpolate this like for time
Q1 = op.resize(Q1, 0)
Q2 = np.abs(r2.variables['river_transport'][:]).sum(axis=1)*2.0/3.0
# Combine river info into one dataset
iend1 = find(datesr1<datetime(2012,1,1,0,0,0))[-1] # ending index for file 1
tRiver = np.concatenate((tr1[:iend1], tr2[:]), axis=0)
datesRiver = np.concatenate((datesr1[:iend1], datesr2))
R = np.concatenate((Q1[:iend1], Q2))
r1.close(); r2.close()
# start and end indices in time for river discharge
示例#4
0
文件: inout.py 项目: kjordahl/tracpy
def readfields(tind,grid,nc,z0=None,zpar=None):
    '''
    readfields()
    Kristen Thyng, March 2013

    Reads in model output in order to calculate fluxes and z grid 
    properties to send into step.f95.
    Should be called initially and then subsequently each time loop.
    All arrays are changed to Fortran ordering (from Python ordering)
    and to tracmass variables ordering from ROMS ordering 
    i.e. from [t,k,j,i] to [i,j,k,t]
    right away after reading in.

    Input:
     tind   Single time index for model output to read in
     grid   Dictionary containing all necessary time-independent grid fields
     nc     NetCDF object for relevant files
     z0     (optional) if doing 2d isoslice, z0 contains string saying which kind
     zpar   (optional) if doing 2d isoslice, zpar is the depth/level/density
            at which we are to get the level

    Output:
     uflux1     Zonal (x) flux at tind
     vflux1     Meriodional (y) flux at tind
     dzt        Height of k-cells in 3 dim in meters on rho vertical grid. [imt,jmt,km]
     zrt        Time-dependent depths of cells on vertical rho grid (meters).
                For the isoslice case, zrt ends up with 1 vertical level which contains
                the depths for the vertical center of the cell for that level.
     zwt        Time-dependent depths of cells on vertical w grid (meters). zwt always
                contains the depths at the vertical cell edges for the whole 3D grid
                and the correct depths can be accessed using the drifter indices.

    Array descriptions:
     u,v        Zonal (x) and meridional (y) velocities [imt,jmt,km] (m/s)
     ssh        Free surface [imt,jmt] (m)
     dz         Height of k-cells in 1 dim [km]
                From coord.f95: z coordinates (z>0 going up) for layers in meters 
                bottom layer: k=0; surface layer: k=KM and zw=0
                dz = layer thickness
     zt         Depths (negative) in meters of w vertical grid [imt,jmt,km+1]
     dzt        Height of k-cells in 3 dim in meters on rho vertical grid. [imt,jmt,km]
     dzt0       Height of k-cells in 2 dim. [imt,jmt]
     dzu        Height of each u grid cell [imt-1,jmt,km]
     dzv        Height of each v grid cell [imt,jmt-1,km]
     uflux1     Zonal (x) fluxes [imt-1,jmt,km] (m^3/s)?
     vflux1     Meriodional (y) fluxes [imt,jmt-1,km] (m^3/s)?
    '''

    # tic_temp = time.time()
    # Read in model output for index tind
    if z0 == 's': # read in less model output to begin with, to save time
        u = nc.variables['u'][tind,zpar,:,:] 
        v = nc.variables['v'][tind,zpar,:,:]
        ssh = nc.variables['zeta'][tind,:,:] # [t,j,i], ssh in tracmass
    else:
        u = nc.variables['u'][tind,:,:,:] 
        v = nc.variables['v'][tind,:,:,:]
        ssh = nc.variables['zeta'][tind,:,:] # [t,j,i], ssh in tracmass
    # time_read = time.time()-tic_temp

    # tic_temp = time.time()
    # # make arrays in same order as is expected in the fortran code
    # # ROMS expects [time x k x j x i] but tracmass is expecting [i x j x k x time]
    # # change these arrays to be fortran-directioned instead of python
    # # u = u.T.copy(order='f')
    # # v = v.T.copy(order='f')
    # # ssh = ssh.T.copy(order='f')
    # # # Flip vertical dimension because in ROMS surface is at k=-1 
    # # # and in tracmass surface is at 1
    # # u = np.flipud(u)
    # # v = np.flipud(v)
    # time_flip1 = time.time()-tic_temp

    # This is code from tracmass itself, which is being replaced by Rob's octant code
    # # Copy calculations from rutgersNWA/readfields.f95
    # dzt = np.ones((grid['imt'],grid['jmt'],grid['km']))*np.nan
    # dzu = np.ones((grid['imt']-1,grid['jmt'],grid['km']))*np.nan
    # dzv = np.ones((grid['imt'],grid['jmt']-1,grid['km']))*np.nan
    # for k in xrange(grid['km']):
    #   dzt0 = (grid['sc_r'][k]-grid['Cs_r'][k])*grid['hc'] \
    #           + grid['Cs_r'][k]*grid['h']
    #   dzt[:,:,k] = dzt0 + ssh*(1.+dzt0/grid['h'])

    # dzt0 = dzt[:,:,grid['km']-1]
    # dzt[:,:,0:grid['km']-1] = dzt[:,:,1:grid['km']] - dzt[:,:,0:grid['km']-1]
    # dzt[:,:,grid['km']-1] = ssh - dzt0

    # tic_temp = time.time()
    h = grid['h'].T.copy(order='c')
    # Use octant to calculate depths for the appropriate vertical grid parameters
    # have to transform a few back to ROMS coordinates and python ordering for this
    zwt = octant.depths.get_zw(1, 1, grid['km']+1, grid['theta_s'], grid['theta_b'], 
                    h, grid['hc'], zeta=ssh, Hscale=3)
    # Change dzt to tracmass/fortran ordering
    # zwt = zwt.T.copy(order='f')
    # dzt = zwt[:,:,1:] - zwt[:,:,:-1]
    dzt = zwt[1:,:,:] - zwt[:-1,:,:]
    # pdb.set_trace()
    # time_zw = time.time()-tic_temp

    # tic_temp = time.time()
    # also want depths on rho grid
    zrt = octant.depths.get_zrho(1, 1, grid['km'], grid['theta_s'], grid['theta_b'], 
                    h, grid['hc'], zeta=ssh, Hscale=3)
    # Change dzt to tracmass/fortran ordering
    # zrt = zrt.T.copy(order='f')
    # time_zr = time.time()-tic_temp

    # tic_temp = time.time()
    dzu = .5*(dzt[:,:,0:grid['imt']-1] + dzt[:,:,1:grid['imt']])
    dzv = .5*(dzt[:,0:grid['jmt']-1,:] + dzt[:,1:grid['jmt'],:])
    # dzu = .5*(dzt[0:grid['imt']-1,:,:] + dzt[1:grid['imt'],:,:])
    # dzv = .5*(dzt[:,0:grid['jmt']-1,:] + dzt[:,1:grid['jmt'],:])
    # dzu = dzt[0:grid['imt']-1,:,:]*0.5 + dzt[1:grid['imt'],:,:]*0.5
    # dzv = dzt[:,0:grid['jmt']-1,:]*0.5 + dzt[:,1:grid['jmt'],:]*0.5
    # dzu[0:grid['imt']-1,:,:] = dzt[0:grid['imt']-1,:,:]*0.5 + dzt[1:grid['imt'],:,:]*0.5
    # dzv[:,0:grid['jmt']-1,:] = dzt[:,0:grid['jmt']-1,:]*0.5 + dzt[:,1:grid['jmt'],:]*0.5
    # pdb.set_trace()
    # time_interp = time.time()-tic_temp

    # tic_temp = time.time()
    # Change order back to ROMS/python for this calculation
    # u = u.T.copy(order='c')
    # v = v.T.copy(order='c')
    # dzu = dzu.T.copy(order='c')
    # dzv = dzv.T.copy(order='c')
    # dzt = dzt.T.copy(order='c')
    dyu = grid['dyu'].T.copy(order='c')
    dxv = grid['dxv'].T.copy(order='c')
    # zrt = zrt.T.copy(order='c')
    # time_flip2 = time.time()-tic_temp
    # pdb.set_trace()

    # tic_temp = time.time()
    # I think I can avoid this loop for the isoslice case
    if z0 == None: # 3d case
        uflux1 = u*dzu*dyu
        vflux1 = v*dzv*dxv
    elif z0 == 's': # want a specific s level zpar
        uflux1 = u*dzu[zpar,:,:]*dyu
        vflux1 = v*dzv[zpar,:,:]*dxv
        dzt = dzt[zpar,:,:]
        zrt = zrt[zpar,:,:]
    elif z0 == 'rho' or z0 == 'salt' or z0 == 'temp':
        # the vertical setup we're selecting an isovalue of
        vert = nc.variables[z0][tind,:,:,:]
        # pdb.set_trace()
        # Calculate flux and then take slice
        uflux1 = octant.tools.isoslice(u*dzu*dyu,op.resize(vert,2),zpar)
        vflux1 = octant.tools.isoslice(v*dzv*dxv,op.resize(vert,1),zpar)
        dzt = octant.tools.isoslice(dzt,vert,zpar)
        zrt = octant.tools.isoslice(zrt,vert,zpar)
        # pdb.set_trace()
    elif z0 == 'z':
        # Calculate flux and then take slice
        uflux1 = octant.tools.isoslice(u*dzu*dyu,op.resize(zrt,2),zpar)
        vflux1 = octant.tools.isoslice(v*dzv*dxv,op.resize(zrt,1),zpar)
        dzt = octant.tools.isoslice(dzt,zrt,zpar)
        zrt = np.ones(uflux1.shape)*zpar # array of the input desired depth
    # time_flux = time.time()-tic_temp

    # tic_temp = time.time()
    # Change all back to tracmass/fortran ordering if being used again
    # tic = time.time()
    # uflux1 = uflux1.T.copy(order='f')
    # vflux1 = vflux1.T.copy(order='f')
    # dzt = dzt.T.copy(order='f')
    # zrt = zrt.T.copy(order='f')
    # ssh = ssh.T.copy(order='f')
    # zwt = zwt.T.copy(order='f')
    # print "copy time",time.time()-tic
    # tic = time.time()
    # This is faster than copying arrays
    # Don't bother changing order of these arrays since I have to change it in 
    # run.py anyway (concatenate appears not to preserve ordering)
    uflux1 = uflux1.T
    vflux1 = vflux1.T
    dzt = np.asfortranarray(dzt.T)
    # uflux1 = np.asfortranarray(uflux1.T)
    # vflux1 = np.asfortranarray(vflux1.T)
    # dzt = np.asfortranarray(dzt.T)
    zrt = np.asfortranarray(zrt.T)
    ssh = np.asfortranarray(ssh.T)
    zwt = np.asfortranarray(zwt.T)
    # print "fortran time",time.time()-tic
    # time_flip3 = time.time()-tic_temp


    # tic_temp = time.time()
    # make sure that all fluxes have a placeholder for depth
    if is_string_like(z0):
        uflux1 = uflux1.reshape(np.append(uflux1.shape,1))
        vflux1 = vflux1.reshape(np.append(vflux1.shape,1))
        dzt = dzt.reshape(np.append(dzt.shape,1))
        zrt = zrt.reshape(np.append(zrt.shape,1))
    # time_reshape = time.time()-tic_temp


    # # Flip vertical dimension because in ROMS surface is at k=-1 
    # # and in tracmass surface is at 1
    # # This is not true. In tracmass, surface is at k=KM
    # uflux1 = uflux1[:,:,::-1]
    # vflux1 = vflux1[:,:,::-1]
    # dzt = dzt[:,:,::-1]
    # uflux1 = np.flipud(uflux1)
    # vflux1 = np.flipud(vflux1)
    # dzt = np.flipud(dzt)


    # print "time to read=",time_read
    # # print "time to flip=",time_flip1
    # print "time to get zw=",time_zw
    # print "time to get zr=",time_zr
    # print "time to interp=",time_interp
    # print "time to flip2=",time_flip2
    # print "time to flux=",time_flux
    # print "time to flip3=",time_flip3
    # print "time to reshape=",time_reshape

    return uflux1, vflux1, dzt, zrt, zwt
示例#5
0
def transport(name, fmod=None, Title=None, dmax=None, N=7, extraname=None,
                llcrnrlon=-98.5, llcrnrlat=22.5, urcrnrlat=31.0, urcrnrlon=-87.5,
                colormap='Blues'):
    '''
    Make plot of zoomed-in area near DWH spill of transport of drifters over 
    time.

    FILL IN

    Inputs:
        name
        U
        V
        lon0
        lat0
        T0
    '''


# (name=None, U, V, lon0, lat0, T0, dmax, extraname, Title, N,
                # llcrnrlon, llcrnrlat, urcrnrlat, urcrnrlon, colormap):

    # Load in transport information
    U, V, lon0, lat0, T0 = inout.loadtransport(name,fmod=fmod)

    # Smaller basemap parameters.
    loc = 'http://barataria.tamu.edu:8080/thredds/dodsC/NcML/txla_nesting6.nc'
    grid = inout.readgrid(loc, llcrnrlon=llcrnrlon, llcrnrlat=llcrnrlat, 
                                    urcrnrlat=urcrnrlat, urcrnrlon=urcrnrlon)

    S = np.sqrt(op.resize(U,1)**2+op.resize(V,0)**2)
    Splot = (S/T0)*100
    if dmax is None:
        dmax = Splot.max()
    else:
        dmax = dmax
    # from http://matplotlib.1069221.n5.nabble.com/question-about-contours-and-clim-td21111.html
    locator = ticker.MaxNLocator(N) # if you want no more than 10 contours
    locator.create_dummy_axis()
    locator.set_bounds(0,dmax)#d.min(),d.max())
    levs = locator()

    fig = figure(figsize=(12,10))
    background(grid=grid)
    c = contourf(grid['xpsi'], grid['ypsi'], Splot,             
            cmap=colormap, extend='max', levels=levs)
    title(Title)

    # Add initial drifter location (all drifters start at the same location)
    lon0 = lon0.mean()
    lat0 = lat0.mean()
    x0, y0 = grid['basemap'](lon0, lat0)
    plot(x0, y0, 'go', markersize=10)

    # Inlaid colorbar
    cax = fig.add_axes([0.49, 0.25, 0.39, 0.02])
    # cax = fig.add_axes([0.5, 0.2, 0.35, 0.02])
    cb = colorbar(cax=cax,orientation='horizontal')
    cb.set_label('Normalized drifter transport (%)')

    if extraname is None:
        savefig('figures/' + name + '/transport', bbox_inches='tight')
    else:
        savefig('figures/' + name + '/transport' + extraname, bbox_inches='tight')
示例#6
0
def transport(name,
              fmod=None,
              Title=None,
              dmax=None,
              N=7,
              extraname=None,
              llcrnrlon=-98.5,
              llcrnrlat=22.5,
              urcrnrlat=31.0,
              urcrnrlon=-87.5,
              colormap='Blues',
              fig=None,
              ax=None):
    '''
    Make plot of zoomed-in area near DWH spill of transport of drifters over 
    time.

    FILL IN

    Inputs:
        name
        U
        V
        lon0
        lat0
        T0
    '''

    # (name=None, U, V, lon0, lat0, T0, dmax, extraname, Title, N,
    # llcrnrlon, llcrnrlat, urcrnrlat, urcrnrlon, colormap):

    # Load in transport information
    U, V, lon0, lat0, T0 = inout.loadtransport(name, fmod=fmod)

    # Smaller basemap parameters.
    loc = 'http://barataria.tamu.edu:8080/thredds/dodsC/NcML/txla_nesting6.nc'
    grid = inout.readgrid(loc,
                          llcrnrlon=llcrnrlon,
                          llcrnrlat=llcrnrlat,
                          urcrnrlat=urcrnrlat,
                          urcrnrlon=urcrnrlon)

    S = np.sqrt(op.resize(U, 1)**2 + op.resize(V, 0)**2)
    Splot = (S / T0) * 100
    if dmax is None:
        dmax = Splot.max()
    else:
        dmax = dmax
    # from http://matplotlib.1069221.n5.nabble.com/question-about-contours-and-clim-td21111.html
    locator = ticker.MaxNLocator(N)  # if you want no more than 10 contours
    locator.create_dummy_axis()
    locator.set_bounds(0, dmax)  #d.min(),d.max())
    levs = locator()

    if fig is None:
        fig = figure(figsize=(11, 10))
    else:
        fig = fig
    background(grid=grid)
    c = contourf(grid['xpsi'],
                 grid['ypsi'],
                 Splot,
                 cmap=colormap,
                 extend='max',
                 levels=levs)
    title(Title)

    # # Add initial drifter location (all drifters start at the same location)
    # lon0 = lon0.mean()
    # lat0 = lat0.mean()
    # x0, y0 = grid['basemap'](lon0, lat0)
    # plot(x0, y0, 'go', markersize=10)

    if ax is None:
        ax = gca()
    else:
        ax = ax
    # Want colorbar at the given location relative to axis so this works regardless of # of subplots,
    # so convert from axis to figure coordinates
    # To do this, first convert from axis to display coords
    # transformations: http://matplotlib.org/users/transforms_tutorial.html
    ax_coords = [0.35, 0.25, 0.6,
                 0.02]  # axis: [x_left, y_bottom, width, height]
    disp_coords = ax.transAxes.transform([
        (ax_coords[0], ax_coords[1]),
        (ax_coords[0] + ax_coords[2], ax_coords[1] + ax_coords[3])
    ])  # display: [x_left,y_bottom,x_right,y_top]
    inv = fig.transFigure.inverted(
    )  # inverter object to go from display coords to figure coords
    fig_coords = inv.transform(
        disp_coords)  # figure: [x_left,y_bottom,x_right,y_top]
    # actual desired figure coords. figure: [x_left, y_bottom, width, height]
    fig_coords = [
        fig_coords[0, 0], fig_coords[0,
                                     1], fig_coords[1, 0] - fig_coords[0, 0],
        fig_coords[1, 1] - fig_coords[0, 1]
    ]
    # Inlaid colorbar
    cax = fig.add_axes(fig_coords)
    # cax = fig.add_axes([0.39, 0.25, 0.49, 0.02])
    # cax = fig.add_axes([0.49, 0.25, 0.39, 0.02])
    cb = colorbar(cax=cax, orientation='horizontal')
    cb.set_label('Normalized drifter transport (%)')

    if extraname is None:
        savefig('figures/' + name + '/transport', bbox_inches='tight')
    else:
        savefig('figures/' + name + '/' + extraname + 'transport',
                bbox_inches='tight')
示例#7
0
文件: run.py 项目: hetland/tracpy
latv = grid.variables['lat_v'][:]
xv, yv = basemap(lonv,latv)
hfull = grid.variables['h'][:]
lonr = grid.variables['lon_rho'][:]#[1:-1,1:-1]
latr = grid.variables['lat_rho'][:]#[1:-1,1:-1]
xr, yr = basemap(lonr,latr)
lonpsi = grid.variables['lon_psi'][:]
latpsi = grid.variables['lat_psi'][:]
xpsi, ypsi = basemap(lonpsi,latpsi)
maskr = grid.variables['mask_rho'][:]#[1:-1,1:-1]
X, Y = np.meshgrid(np.arange(xr.shape[1]),np.arange(yr.shape[0])) # grid in index coordinates, without ghost cells
tri = delaunay.Triangulation(X.flatten(),Y.flatten())
# Angle on rho grid
theta = grid.variables['angle'][:]
# Interpolate theta to be on psi grid
theta = op.resize(op.resize(theta,0),1)
pm = grid.variables['pm'][:] # 1/dx
pn = grid.variables['pn'][:] # 1/dy

# The following are for setting up z array on u (v) grids for calculating u (v) fluxes
# Want h only within domain in y (x) direction (no ghost cells) and interpolated onto cell
# walls in x (y) direction
hu = op.resize(grid.variables['h'][1:-1,:],1)
hv = op.resize(grid.variables['h'][:,1:-1],0)

loc = '/Users/kthyng/Documents/research/postdoc/' # for model outputs
files = np.sort(glob.glob(loc + 'ocean_his_*.nc')) # sorted list of file names
filesfull = np.sort(glob.glob(loc + 'ocean_his_*.nc')) #full path of files
# Find the list of files that cover the desired time period
for i,name in enumerate(files): # Loop through files
	nctemp = netCDF.Dataset(name)
示例#8
0
# w = netCDF.Dataset('/atch/raid1/zhangxq/Projects/narr_txla/txla_blk_narr_' + str(year) + '.nc')
# Wind time period to use
unitsWind = (w.variables['time'].units).replace('/','-')
datesWind = netCDF.num2date(w.variables['time'][:], unitsWind)
# datesWind = datesModel
wdx = 25; wdy = 40 # in indices
##

## River forcing ##
r1 = netCDF.Dataset('/rho/raid/home/kthyng/txla/TXLA_river_4dyes_2012.nc') # use for through 2011
r2 = netCDF.Dataset('/rho/raid/home/kthyng/txla/TXLA_river_4dyes_2012_2014.nc') # use for 2012-2014
# River timing
tr1 = r1.variables['river_time']
tunitsr1 = tr1.units
# interpolate times for this data file since at the 12 hours mark instead of beginning of the day
tr1 = op.resize(tr1, 0)
datesr1 = netCDF.num2date(tr1[:], tunitsr1)
tr2 = r2.variables['river_time']
datesr2 = netCDF.num2date(tr2[:], tr2.units)
# all of river input
Q1 = np.abs(r1.variables['river_transport'][:]).sum(axis=1)*2.0/3.0
# interpolate this like for time
Q1 = op.resize(Q1, 0)
Q2 = np.abs(r2.variables['river_transport'][:]).sum(axis=1)*2.0/3.0
# Combine river info into one dataset
iend1 = find(datesr1<datetime(2012,1,1,0,0,0))[-1] # ending index for file 1
tRiver = np.concatenate((tr1[:iend1], tr2[:]), axis=0)
datesRiver = np.concatenate((datesr1[:iend1], datesr2))
R = np.concatenate((Q1[:iend1], Q2))
r1.close(); r2.close()
# start and end indices in time for river discharge
示例#9
0
    # interpolation constant for each time step
    r2 = np.linspace(0, 1, t1[istart_dates1:].size)
    r1 = 1. - r2

    # Linearly combine model output in overlap region
    # pdb.set_trace()
    uin2[:iend_dates2] = (r1.reshape(r1.size,1,1)*uin1[istart_dates1:] + r2.reshape(r1.size,1,1)*uin2[:iend_dates2])
    del(uin1)
    # Cut off end part
    uin2 = uin2[:istart_dates2] 
    t = t2[:istart_dates2]
    # Update time dimension
    nt = uin2.shape[0]

    # u and v are on rho grid to start
    uin2 = op.resize(uin2, 2); # onto staggered grid
    uin2 = uin2.reshape((nt, 1, yu, xu)).repeat(zl,axis=1)

    # Make new file
    rootgrp = netCDF.Dataset('ocean_his_' + str(i+1).zfill(4) + '.nc','w',format='NETCDF3_64BIT')
    rootgrp.createDimension('xu',xu)
    rootgrp.createDimension('yu',yu)
    rootgrp.createDimension('xv',xv)
    rootgrp.createDimension('yv',yv)
    rootgrp.createDimension('zl',zl)
    # Change time dimension to be unlimited for aggregation later
    rootgrp.createDimension('nt',None)
    ocean_time = rootgrp.createVariable('ocean_time','f8',('nt')) # 64-bit floating point
    u = rootgrp.createVariable('u','f4',('nt','zl','yu','xu')) # 64-bit floating point
    v = rootgrp.createVariable('v','f4',('nt','zl','yv','xv')) # 64-bit floating point
    u[:] = uin2; ocean_time[:] = t;
示例#10
0
Smax = 0

for i,fmod in enumerate(fmods):

    ## Read in transport info ##
    Files = glob.glob('tracks/' + fmod + '-*')

    U = 0; V = 0
    for File in Files:
        d = netCDF.Dataset(File)
        U += d.variables['U'][:]
        V += d.variables['V'][:]
        d.close

    # S is at cell centers, minus ghost points
    Stemp = np.sqrt(op.resize(U[:,1:-1],0)**2 + op.resize(V[1:-1,:],1)**2)
    S.append(Stemp)

    Smax = max((Smax,Stemp.max()))



## Plot ##
fig = plt.figure(figsize=(12,4.8))#, dpi=150)
fig.suptitle('Surface transport', fontsize=18)
for i in xrange(len(S)):

    ax = fig.add_subplot(2,4,i+1)
    ax.set_frame_on(False) # kind of like it without the box

    if i==0:
def readfields(tind, grid, nc, z0=None, zpar=None, zparuv=None):
    """
    readfields()
    Kristen Thyng, March 2013

    Reads in model output in order to calculate fluxes and z grid
    properties to send into step.f95.
    Should be called initially and then subsequently each time loop.
    All arrays are changed to Fortran ordering (from Python ordering)
    and to tracmass variables ordering from ROMS ordering
    i.e. from [t,k,j,i] to [i,j,k,t]
    right away after reading in.

    Args:
        tind: Single time index for model output to read in
        grid: Dictionary containing all necessary time-independent grid
         fields
        nc: NetCDF object for relevant files
        z0 (Optional): if doing 2d isoslice, z0 contains string saying which
         kind
        zpar (Optional): if doing 2d isoslice, zpar is the
         depth/level/density at which we are to get the level
        zparuv (Optional): Use this if the k index for the model output
         fields (e.g, u, v) is different from the k index in the grid. This
         might happen if, for example, only the surface current were saved,
         but the model run originally did have many layers. This parameter
         represents the k index for the u and v output, not for the grid.

    Returns:
        * uflux1 - Zonal (x) flux at tind
        * vflux1 - Meriodional (y) flux at tind
        * dzt - Height of k-cells in 3 dim in meters on rho vertical grid.
          [imt,jmt,km]
        * zrt - Time-dependent depths of cells on vertical rho grid (meters).
          For the isoslice case, zrt ends up with 1 vertical level which
          contains the depths for the vertical center of the cell for that
          level.
        * zwt - Time-dependent depths of cells on vertical w grid (meters).
          zwt always contains the depths at the vertical cell edges for the
          whole 3D grid and the correct depths can be accessed using the
          drifter indices.

    Array descriptions:
     * u,v - Zonal (x) and meridional (y) velocities [imt,jmt,km] (m/s)
     * ssh - Free surface [imt,jmt] (m)
     * dz - Height of k-cells in 1 dim [km]
       From coord.f95: z coordinates (z>0 going up) for layers in meters
       bottom layer: k=0; surface layer: k=KM and zw=0
       dz = layer thickness
     * zt - Depths (negative) in meters of w vertical grid [imt,jmt,km+1]
     * dzt - Height of k-cells in 3 dim in meters on rho vertical grid.
       [imt,jmt,km]
     * dzt0 - Height of k-cells in 2 dim. [imt,jmt]
     * dzu - Height of each u grid cell [imt-1,jmt,km]
     * dzv - Height of each v grid cell [imt,jmt-1,km]
     * uflux1 - Zonal (x) fluxes [imt-1,jmt,km] (m^3/s)?
     * vflux1 - Meriodional (y) fluxes [imt,jmt-1,km] (m^3/s)?

    """

    # this parameter is in case there is less model output available
    # vertically than was actually run on the grid
    if zparuv is None:
        zparuv = zpar

    # tic_temp = time.time()
    # Read in model output for index tind
    if z0 == 's':  # read in less model output to begin with, to save time
        u = nc.variables['u'][tind, zparuv, :, :]
        v = nc.variables['v'][tind, zparuv, :, :]
        if 'zeta' in nc.variables:
            # [t,j,i], ssh in tracmass
            ssh = nc.variables['zeta'][tind, :, :]
            sshread = True
        else:
            sshread = False
    else:
        u = nc.variables['u'][tind, :, :, :]
        v = nc.variables['v'][tind, :, :, :]
        if 'zeta' in nc.variables:
            # [t,j,i], ssh in tracmass
            ssh = nc.variables['zeta'][tind, :, :]
            sshread = True
        else:
            sshread = False

    # Use octant to calculate depths for the appropriate vertical grid
    # parameters have to transform a few back to ROMS coordinates and python
    # ordering for this
    if sshread:
        zwt = octant.depths.get_zw(grid.Vtransform, grid.Vstretching,
                                   grid.km+1, grid.theta_s,
                                   grid.theta_b, grid.h, grid.hc, zeta=ssh,
                                   Hscale=3)
    else:  # if ssh isn't available, approximate as 0
        zwt = octant.depths.get_zw(grid.Vtransform, grid.Vstretching,
                                   grid.km+1, grid.theta_s,
                                   grid.theta_b, grid.h, grid.hc, zeta=0,
                                   Hscale=3)

    # Change dzt to tracmass/fortran ordering
    dzt = zwt[1:, :, :] - zwt[:-1, :, :]

    # also want depths on rho grid
    if sshread:
        zrt = octant.depths.get_zrho(grid.Vtransform, grid.Vstretching,
                                     grid.km, grid.theta_s,
                                     grid.theta_b, grid.h, grid.hc,
                                     zeta=ssh, Hscale=3)
    else:
        zrt = octant.depths.get_zrho(grid.Vtransform, grid.Vstretching,
                                     grid.km, grid.theta_s,
                                     grid.theta_b, grid.h, grid.hc, zeta=0,
                                     Hscale=3)

    dzu = .5*(dzt[:, :, 0:grid.imt-1] + dzt[:, :, 1:grid.imt])
    dzv = .5*(dzt[:, 0:grid.jmt-1, :] + dzt[:, 1:grid.jmt, :])

    # I think I can avoid this loop for the isoslice case
    if z0 is None:  # 3d case
        uflux1 = u*dzu*grid.dyu
        vflux1 = v*dzv*grid.dxv
    elif z0 == 's':  # want a specific s level zpar
        uflux1 = u*dzu[zpar, :, :]*grid.dyu
        vflux1 = v*dzv[zpar, :, :]*grid.dxv
        dzt = dzt[zpar, :, :]
        zrt = zrt[zpar, :, :]
    elif z0 == 'rho' or z0 == 'salt' or z0 == 'temp':
        # the vertical setup we're selecting an isovalue of
        vert = nc.variables[z0][tind, :, :, :]
        # Calculate flux and then take slice
        uflux1 = octant.tools.isoslice(u*dzu*grid.dyu, op.resize(vert, 2), zpar)
        vflux1 = octant.tools.isoslice(v*dzv*grid.dxv, op.resize(vert, 1), zpar)
        dzt = octant.tools.isoslice(dzt, vert, zpar)
        zrt = octant.tools.isoslice(zrt, vert, zpar)
    elif z0 == 'z':
        # Calculate flux and then take slice
        uflux1 = octant.tools.isoslice(u*dzu*grid.dyu, op.resize(zrt, 2), zpar)
        vflux1 = octant.tools.isoslice(v*dzv*grid.dxv, op.resize(zrt, 1), zpar)
        dzt = octant.tools.isoslice(dzt, zrt, zpar)
        zrt = np.ones(uflux1.shape)*zpar  # array of the input desired depth

    # make sure that all fluxes have a placeholder for depth
    if isinstance(z0, str):
        uflux1 = uflux1.reshape(np.append(1, uflux1.shape))
        vflux1 = vflux1.reshape(np.append(1, vflux1.shape))
        dzt = dzt.reshape(np.append(1, dzt.shape))
        zrt = zrt.reshape(np.append(1, zrt.shape))

    return uflux1, vflux1, dzt, zrt, zwt
示例#12
0
ax1b.plot([x[n], 891975], [y[n], 146818], '-', color='0.2', lw=0.5)
ax1b.text(891975-10000, 146818-10000, 'Ship track', color='0.1')
if gradient:
    cax1b = fig.add_axes([0.38, 0.94, 0.065, 0.015])  # colorbar axes
else:
    cax1b = fig.add_axes([0.55, 0.94, 0.1, 0.015])  # colorbar axes
cb1b = fig.colorbar(map1b, cax=cax1b, orientation='horizontal')
cb1b.set_label('Free surface [m]', color='0.2')
cb1b.ax.tick_params(labelsize=10, length=2, color='0.2', labelcolor='0.2')
cb1b.set_ticks(np.arange(-0.1, 0.2, 0.1))

if gradient:
    ## TXLA Plot of top half of domain - gradients
    grad1 = (ssh[1:,:] - ssh[:-1,:])/(yr[1:,:] - yr[:-1,:])
    grad2 = (ssh[:,1:] - ssh[:,:-1])/(xr[:,1:] - xr[:,:-1])
    grad = abs(np.sqrt(op.resize(grad1,1)**2 + op.resize(grad2,0)**2))
    tracpy.plotting.background(grid, ax=ax1c, outline=[0, 0, 0, 0], mers=np.arange(-96, -86, 2), parslabels=[0,0,0,0], hlevs=[0])
    map1c = ax1c.pcolormesh(xr, yr, grad, cmap=cmo.matter, vmin=0, vmax=0.000008)
    ax1c.set_frame_on(False)  # kind of like it without the box
    ax1c.text(0.9, 0.01, 'c', color='0.1', transform=ax1c.transAxes, fontsize=12)  # Label subplot

# Temperature, in jet
cmap = cm.jet
data = d[:, var.index('temp')]
# http://matplotlib.org/1.2.1/examples/pylab_examples/hist_colormapped.html
# we need to normalize the data to 0..1 for the full range of the colormap
fracs = data[1:][iup]  # /data[1:][iup].max()
norm = colors.Normalize(fracs.min(), fracs.max())
# loop through the voronoi regions by data point and associated color fraction
for frac, point_region in zip(fracs, vor.point_region):
    color = cmap(norm(frac))  # which color in cmap to use
示例#13
0
# loc = 'http://barataria.tamu.edu:6060/thredds/dodsC/NcML/txla_nesting6.nc'
# grid = tracpy.inout.readgrid(loc, usebasemap=True)
# grid_filename = '/atch/raid1/zhangxq/Projects/txla_nesting6/txla_grd_v4_new.nc'
# vert_filename='/atch/raid1/zhangxq/Projects/txla_nesting6/ocean_his_0001.nc'
# grid = tracpy.inout.readgrid(grid_filename, vert_filename=vert_filename, usebasemap=True)
proj = tracpy.tools.make_proj('nwgom', usebasemap=True)
# grid = tracpy.inout.readgrid('../../grid.nc', proj)
grid = tracpy.inout.readgrid('grid.nc', proj)


if whichtime == 'seasonal':
    
    # Load in histogram
    d = np.load('figures/cross/seasonal100H.npz')
    H = d['H']
    X, Y = np.meshgrid(op.resize(d['xe'],0), op.resize(d['ye'],0))
    fh = grid['trir'].nn_interpolator(grid['h'].flatten())
    depths = fh(X,Y)

    ishallow = depths < shelf_depth
    ideep = depths > shelf_depth

    # winter
    offshore = np.nansum(H[0,ishallow])/ishallow.sum() # likelihood per histogram bin
    onshore = np.nansum(H[0,ideep])/ideep.sum()


elif whichtime == 'interannual':

    if whichseason == 'winter':
示例#14
0
	lonv = grid.variables['lon_v'][:,1:-1]
	latv = grid.variables['lat_v'][:,1:-1]
	xv, yv = basemap(lonv,latv)
	hfull = grid.variables['h'][:]
	lonr = grid.variables['lon_rho'][1:-1,1:-1]
	latr = grid.variables['lat_rho'][1:-1,1:-1]
	xr, yr = basemap(lonr,latr)
	lonpsi = grid.variables['lon_psi'][:]
	latpsi = grid.variables['lat_psi'][:]
	xpsi, ypsi = basemap(lonpsi,latpsi)
	X, Y = np.meshgrid(np.arange(latpsi.shape[0]),np.arange(latpsi.shape[1]))
	tri = delaunay.Triangulation(X.flatten(),Y.flatten())
	# Angle on rho grid
	theta = grid.variables['angle'][:]
	# Interpolate theta to be on psi grid
	theta = op.resize(op.resize(theta,0),1)
	grid.close()
	nc = netCDF.Dataset('/Users/kthyng/Documents/research/postdoc/ocean_his_0150.nc')
	t = nc.variables['ocean_time'][0:0+2]
	# Some grid metrics
	s = nc.variables['s_w'][:] # sigma coords, 31 layers
	cs = nc.variables['Cs_w'][:] # stretching curve in sigma coords, 31 layers
	nc.close()

	xl = xpsi.shape[1]
	yl = xpsi.shape[0]
	zl = len(cs)-1

	tl = 3 # three time outputs
	dt = 4*3600 # 4 hours between outputs
	# pdb.set_trace()
示例#15
0
# w = netCDF.Dataset('/atch/raid1/zhangxq/Projects/narr_txla/txla_blk_narr_' + str(year) + '.nc')
# Wind time period to use
unitsWind = (w.variables['time'].units).replace('/','-')
datesWind = netCDF.num2date(w.variables['time'][:], unitsWind)
# datesWind = datesModel
wdx = 25; wdy = 30 # in indices
##

## River forcing ##
r1 = netCDF.Dataset('/rho/raid/home/kthyng/txla/TXLA_river_4dyes_2012.nc') # use for through 2011
r2 = netCDF.Dataset('/rho/raid/home/kthyng/txla/TXLA_river_4dyes_2012_2014.nc') # use for 2012-2014
# River timing
tr1 = r1.variables['river_time']
tunitsr1 = tr1.units
# interpolate times for this data file since at the 12 hours mark instead of beginning of the day
tr1 = op.resize(tr1, 0)
datesr1 = netCDF.num2date(tr1[:], tunitsr1)
tr2 = r2.variables['river_time']
datesr2 = netCDF.num2date(tr2[:], tr2.units)
# all of river input
Q1 = np.abs(r1.variables['river_transport'][:]).sum(axis=1)*2.0/3.0
# interpolate this like for time
Q1 = op.resize(Q1, 0)
Q2 = np.abs(r2.variables['river_transport'][:]).sum(axis=1)*2.0/3.0
# Combine river info into one dataset
iend1 = find(datesr1<datetime(2012,1,1,0,0,0))[-1] # ending index for file 1
tRiver = np.concatenate((tr1[:iend1], tr2[:]), axis=0)
datesRiver = np.concatenate((datesr1[:iend1], datesr2))
R = np.concatenate((Q1[:iend1], Q2))
r1.close(); r2.close()
# start and end indices in time for river discharge
示例#16
0
def readfields(tind,grid,nc,z0=None, zpar=None, zparuv=None):
    '''
    readfields()
    Kristen Thyng, March 2013

    Reads in model output in order to calculate fluxes and z grid 
    properties to send into step.f95.
    Should be called initially and then subsequently each time loop.
    All arrays are changed to Fortran ordering (from Python ordering)
    and to tracmass variables ordering from ROMS ordering 
    i.e. from [t,k,j,i] to [i,j,k,t]
    right away after reading in.

    Input:
     tind   Single time index for model output to read in
     grid   Dictionary containing all necessary time-independent grid fields
     nc     NetCDF object for relevant files
     z0     (optional) if doing 2d isoslice, z0 contains string saying which kind
     zpar   (optional) if doing 2d isoslice, zpar is the depth/level/density
            at which we are to get the level
     zparuv (optional) Use this if the k index for the model output fields (e.g, u, v) is different
            from the k index in the grid. This might happen if, for example, only the surface current
            were saved, but the model run originally did have many layers. This parameter
            represents the k index for the u and v output, not for the grid.

    Output:
     uflux1     Zonal (x) flux at tind
     vflux1     Meriodional (y) flux at tind
     dzt        Height of k-cells in 3 dim in meters on rho vertical grid. [imt,jmt,km]
     zrt        Time-dependent depths of cells on vertical rho grid (meters).
                For the isoslice case, zrt ends up with 1 vertical level which contains
                the depths for the vertical center of the cell for that level.
     zwt        Time-dependent depths of cells on vertical w grid (meters). zwt always
                contains the depths at the vertical cell edges for the whole 3D grid
                and the correct depths can be accessed using the drifter indices.

    Array descriptions:
     u,v        Zonal (x) and meridional (y) velocities [imt,jmt,km] (m/s)
     ssh        Free surface [imt,jmt] (m)
     dz         Height of k-cells in 1 dim [km]
                From coord.f95: z coordinates (z>0 going up) for layers in meters 
                bottom layer: k=0; surface layer: k=KM and zw=0
                dz = layer thickness
     zt         Depths (negative) in meters of w vertical grid [imt,jmt,km+1]
     dzt        Height of k-cells in 3 dim in meters on rho vertical grid. [imt,jmt,km]
     dzt0       Height of k-cells in 2 dim. [imt,jmt]
     dzu        Height of each u grid cell [imt-1,jmt,km]
     dzv        Height of each v grid cell [imt,jmt-1,km]
     uflux1     Zonal (x) fluxes [imt-1,jmt,km] (m^3/s)?
     vflux1     Meriodional (y) fluxes [imt,jmt-1,km] (m^3/s)?
    '''

    # this parameter is in case there is less model output available vertically than
    # was actually run on the grid
    # pdb.set_trace()
    if zparuv is None:
        zparuv = zpar

    # tic_temp = time.time()
    # Read in model output for index tind
    if z0 == 's': # read in less model output to begin with, to save time
        u = nc.variables['u'][tind,zparuv,:,:] 
        v = nc.variables['v'][tind,zparuv,:,:]
        if 'zeta' in nc.variables:
            ssh = nc.variables['zeta'][tind,:,:] # [t,j,i], ssh in tracmass
            sshread = True
        else:
            sshread = False
    else:
        u = nc.variables['u'][tind,:,:,:] 
        v = nc.variables['v'][tind,:,:,:]
        if 'zeta' in nc.variables:
            ssh = nc.variables['zeta'][tind,:,:] # [t,j,i], ssh in tracmass
            sshread = True
        else:
            sshread = False

    h = grid['h'].T.copy(order='c')
    # Use octant to calculate depths for the appropriate vertical grid parameters
    # have to transform a few back to ROMS coordinates and python ordering for this
    if sshread:
        zwt = octant.depths.get_zw(grid['Vtransform'], grid['Vstretching'], grid['km']+1, grid['theta_s'], grid['theta_b'], 
                        h, grid['hc'], zeta=ssh, Hscale=3)
    else: # if ssh isn't available, approximate as 0
        zwt = octant.depths.get_zw(grid['Vtransform'], grid['Vstretching'], grid['km']+1, grid['theta_s'], grid['theta_b'], 
                        h, grid['hc'], zeta=0, Hscale=3)
    # Change dzt to tracmass/fortran ordering
    dzt = zwt[1:,:,:] - zwt[:-1,:,:]

    # also want depths on rho grid
    if sshread:
        zrt = octant.depths.get_zrho(grid['Vtransform'], grid['Vstretching'], grid['km'], grid['theta_s'], grid['theta_b'], 
                        h, grid['hc'], zeta=ssh, Hscale=3)
    else:
        zrt = octant.depths.get_zrho(grid['Vtransform'], grid['Vstretching'], grid['km'], grid['theta_s'], grid['theta_b'], 
                        h, grid['hc'], zeta=0, Hscale=3)

    dzu = .5*(dzt[:,:,0:grid['imt']-1] + dzt[:,:,1:grid['imt']])
    dzv = .5*(dzt[:,0:grid['jmt']-1,:] + dzt[:,1:grid['jmt'],:])

    # Change order back to ROMS/python for this calculation
    dyu = grid['dyu'].T.copy(order='c')
    dxv = grid['dxv'].T.copy(order='c')

    # I think I can avoid this loop for the isoslice case
    if z0 == None: # 3d case
        uflux1 = u*dzu*dyu
        vflux1 = v*dzv*dxv
    elif z0 == 's': # want a specific s level zpar
        uflux1 = u*dzu[zpar,:,:]*dyu
        vflux1 = v*dzv[zpar,:,:]*dxv
        dzt = dzt[zpar,:,:]
        zrt = zrt[zpar,:,:]
    elif z0 == 'rho' or z0 == 'salt' or z0 == 'temp':
        # the vertical setup we're selecting an isovalue of
        vert = nc.variables[z0][tind,:,:,:]
        # Calculate flux and then take slice
        uflux1 = octant.tools.isoslice(u*dzu*dyu,op.resize(vert,2),zpar)
        vflux1 = octant.tools.isoslice(v*dzv*dxv,op.resize(vert,1),zpar)
        dzt = octant.tools.isoslice(dzt,vert,zpar)
        zrt = octant.tools.isoslice(zrt,vert,zpar)
    elif z0 == 'z':
        # Calculate flux and then take slice
        uflux1 = octant.tools.isoslice(u*dzu*dyu,op.resize(zrt,2),zpar)
        vflux1 = octant.tools.isoslice(v*dzv*dxv,op.resize(zrt,1),zpar)
        dzt = octant.tools.isoslice(dzt,zrt,zpar)
        zrt = np.ones(uflux1.shape)*zpar # array of the input desired depth

    # Change all back to tracmass/fortran ordering if being used again
    # This is faster than copying arrays
    # Don't bother changing order of these arrays since I have to change it in 
    # run.py anyway (concatenate appears not to preserve ordering)
    uflux1 = uflux1.T
    vflux1 = vflux1.T
    dzt = np.asfortranarray(dzt.T)
    zrt = np.asfortranarray(zrt.T)
    if sshread:
        ssh = np.asfortranarray(ssh.T)
    zwt = np.asfortranarray(zwt.T)

    # make sure that all fluxes have a placeholder for depth
    if is_string_like(z0):
        uflux1 = uflux1.reshape(np.append(uflux1.shape,1))
        vflux1 = vflux1.reshape(np.append(vflux1.shape,1))
        dzt = dzt.reshape(np.append(dzt.shape,1))
        zrt = zrt.reshape(np.append(zrt.shape,1))

    return uflux1, vflux1, dzt, zrt, zwt
示例#17
0
                .isel(s_rho=-1, eta_rho=slice(1, -1), xi_rho=slice(1, -1))
                .data.mean(axis=0)
            )
        salt = np.asarray(salt).mean(axis=0)
        # salt = np.squeeze(m.variables['salt'][itmodel,-1,1:-1,1:-1])

    # Surface currents over domain, use psi grid for common locations
    u = []
    for year in years:
        u.append(ds["u"].loc[str(year) + "-" + start : str(year) + "-" + stop].isel(s_rho=-1).data.mean(axis=0))
    u = np.asarray(u).mean(axis=0)
    v = []
    for year in years:
        v.append(ds["v"].loc[str(year) + "-" + start : str(year) + "-" + stop].isel(s_rho=-1).data.mean(axis=0))
    v = np.asarray(v).mean(axis=0)
    u = op.resize(u, 0)
    v = op.resize(v, 1)
    anglev = ds["angle"].data
    u, v = rot2d(u, v, op.resize(op.resize(anglev, 0), 1))

    if var == "speed":
        salt = np.sqrt(u ** 2 + v ** 2)

    # wind stress
    sustr = []
    for year in years:
        sustr.append(ds["sustr"].loc[str(year) + "-" + start : str(year) + "-" + stop].data.mean(axis=0))
    sustr = np.asarray(sustr).mean(axis=0)
    svstr = []
    for year in years:
        svstr.append(ds["svstr"].loc[str(year) + "-" + start : str(year) + "-" + stop].data.mean(axis=0))
                    # reading in a subset of indices from the beginning is prohibitively slow
                    xg = d.variables['xg'][:]; xg = xg[ind[::ddi],:]
                    yg = d.variables['yg'][:]; yg = yg[ind[::ddi],:]
                    xp, yp, _ = tracpy.tools.interpolate2d(xg, yg, grid, 'm_ij2xy')
                    nind = xg==-1
                    del(xg,yg)
                    # xg[nind] = np.nan; yg[nind] = np.nan
                    xp[nind] = np.nan; yp[nind] = np.nan
                    d.close()

                    # Calculate and accumulate histograms of starting locations of drifters that cross shelf
                    # Htemp, xe, ye = np.histogram2d(xg.flatten(), yg.flatten(), bins=bins, range=[[XGrange[0], XGrange[1]], [YGrange[0], YGrange[1]]])
                    Htemp, xe, ye = np.histogram2d(xp.flatten(), yp.flatten(), bins=bins, range=[[XPrange[0], XPrange[1]], [YPrange[0], YPrange[1]]])
                    H = np.nansum( np.vstack((H[np.newaxis,:,:], Htemp[np.newaxis,:,:])), axis=0)

                XE, YE = np.meshgrid(op.resize(xe, 0), op.resize(ye, 0))
                hist, bin_edges = np.histogram(H.flat, bins=100) # find # of occurrences of histogram bin values
                n = np.cumsum(hist)
                Hmax = bin_edges[find(n<(n.max()-n.min())*.8+n.min())[-1]] # take the 80% of histogram occurrences as the max instead of actual max since too high
                locator = ticker.MaxNLocator(11)
                locator.create_dummy_axis()
                locator.set_bounds(0, 1) 
                levels = locator()
                extend = 'max'
                H = H/Hmax
                mappable = ax.contourf(XE, YE, H.T, cmap=cmap, levels=levels, extend=extend)
                ax.contour(grid['xr'], grid['yr'], grid['h'], [shelf_depth], colors='0.1', linewidth=3)

                # outline the area where drifters started
                d = np.load('calcs/winter-contour-pts.npz')
                ax.plot(d['x'], d['y'], 'k', lw=3)
示例#19
0
    nc = netCDF.Dataset(loc)  # for wind
    t = nc.variables['ocean_time']
    datesw = netCDF.num2date(t[:], t.units)

    # Surface stress
    sustr = nc.variables['sustr']; svstr = nc.variables['svstr']

    ## River forcing ##
    # r1 = netCDF.Dataset('/atch/raid1/zhangxq/Projects/txla_nesting6/TXLA_river_4dyes_2011.nc')
    r1 = netCDF.Dataset('/rho/raid/home/kthyng/txla/TXLA_river_4dyes_2012.nc')  # use for through 2011
    r2 = netCDF.Dataset('/rho/raid/home/kthyng/txla/TXLA_river_4dyes_2012_2014.nc')  # use for 2012-2014
    # River timing
    tr1 = r1.variables['river_time']
    tunitsr1 = tr1.units
    # interpolate times for this data file since at the 12 hours mark instead of beginning of the day
    tr1 = op.resize(tr1, 0)
    datesr1 = netCDF.num2date(tr1[:], tunitsr1)
    tr2 = r2.variables['river_time']
    datesr2 = netCDF.num2date(tr2[:], tr2.units)
    # all of river input
    Q1 = np.abs(r1.variables['river_transport'][:]).sum(axis=1)*2.0/3.0
    # interpolate this like for time
    Q1 = op.resize(Q1, 0)
    Q2 = np.abs(r2.variables['river_transport'][:]).sum(axis=1)*2.0/3.0
    # pdb.set_trace()

    # Combine river info into one dataset
    iend1 = find(datesr1<datetime(2012,1,1,0,0,0))[-1] # ending index for file 1
    tr = np.concatenate((tr1[:iend1], tr2[:]), axis=0)
    datesr = np.concatenate((datesr1[:iend1], datesr2))
    Q = np.concatenate((Q1[:iend1], Q2))
示例#20
0
for i, File in enumerate(Files):

    datestr = File.split('/')[-1].split('gc')[0]

    fig = plt.figure(figsize=(6.8375, 6.6125))
    fig.subplots_adjust(left=0.04, bottom=0.15, right=1.0, top=0.96, wspace=0.07, hspace=0.04)
    ax = fig.add_subplot(111)
    tracpy.plotting.background(grid=grid, ax=ax, mers=np.arange(-100, -80, 2))
    ax.set_title('Simulation starting ' + datestr)

    if not os.path.exists(fname):

        d = netCDF.Dataset(File)
        U = d.variables['U'][:]; V = d.variables['V'][:]
        d.close()
        S[i,:,:] = np.sqrt(op.resize(U, 1)**2 + op.resize(V, 0)**2)
        # S[i,:,:] = S[i,:,:] + Stemp

        # locator = ticker.MaxNLocator(11)
        # locator.create_dummy_axis()
        # locator.set_bounds(0, 1) 
        # levels = locator()
        # extend = 'max'
        # H = H/Hmax
        Smax = 1.

    else:
        d = np.load(fname); S = d['S']; d.close()
        Smax = S.max()

    if howplot=='log':
示例#21
0
文件: plotting.py 项目: kthyng/tracpy
def transport(
    name,
    fmod=None,
    Title=None,
    dmax=None,
    N=7,
    extraname=None,
    llcrnrlon=-98.5,
    llcrnrlat=22.5,
    urcrnrlat=31.0,
    urcrnrlon=-87.5,
    colormap="Blues",
    fig=None,
    ax=None,
):
    """
    Make plot of zoomed-in area near DWH spill of transport of drifters over
    time.

    FILL IN

    Args:
        name
        U
        V
        lon0
        lat0
        T0
    """

    # Load in transport information
    U, V, lon0, lat0, T0 = inout.loadtransport(name, fmod=fmod)

    # Smaller basemap parameters.
    loc = "http://barataria.tamu.edu:8080/thredds/dodsC/NcML/txla_nesting6.nc"
    grid = inout.readgrid(loc, llcrnrlon=llcrnrlon, llcrnrlat=llcrnrlat, urcrnrlat=urcrnrlat, urcrnrlon=urcrnrlon)

    S = np.sqrt(op.resize(U, 1) ** 2 + op.resize(V, 0) ** 2)
    Splot = (S / T0) * 100
    if dmax is None:
        dmax = Splot.max()
    else:
        dmax = dmax
    # from http://matplotlib.1069221.n5.nabble.com/question-about-contours-and-clim-td21111.html
    locator = ticker.MaxNLocator(N)  # if you want no more than 10 contours
    locator.create_dummy_axis()
    locator.set_bounds(0, dmax)  # d.min(),d.max())
    levs = locator()

    if fig is None:
        fig = plt.figure(figsize=(11, 10))
    else:
        fig = fig
    background(grid=grid)
    c = fig.contourf(grid.xpsi, grid.ypsi, Splot, cmap=colormap, extend="max", levels=levs)
    plt.title(Title)

    # # Add initial drifter location (all drifters start at the same location)
    # lon0 = lon0.mean()
    # lat0 = lat0.mean()
    # x0, y0 = grid['basemap'](lon0, lat0)
    # plot(x0, y0, 'go', markersize=10)

    if ax is None:
        ax = plt.gca()
    else:
        ax = ax
    # Want colorbar at the given location relative to axis so this works
    # regardless of # of subplots,
    # so convert from axis to figure coordinates
    # To do this, first convert from axis to display coords
    # transformations: http://matplotlib.org/users/transforms_tutorial.html
    ax_coords = [0.35, 0.25, 0.6, 0.02]  # axis: [x_left, y_bottom, width, height]
    # display: [x_left,y_bottom,x_right,y_top]
    disp_coords = ax.transAxes.transform(
        [(ax_coords[0], ax_coords[1]), (ax_coords[0] + ax_coords[2], ax_coords[1] + ax_coords[3])]
    )
    # inverter object to go from display coords to figure coords
    inv = fig.transFigure.inverted()
    # figure: [x_left,y_bottom,x_right,y_top]
    fig_coords = inv.transform(disp_coords)
    # actual desired figure coords. figure: [x_left, y_bottom, width, height]
    fig_coords = [
        fig_coords[0, 0],
        fig_coords[0, 1],
        fig_coords[1, 0] - fig_coords[0, 0],
        fig_coords[1, 1] - fig_coords[0, 1],
    ]

    # Inlaid colorbar
    cax = fig.add_axes(fig_coords)
    # cax = fig.add_axes([0.39, 0.25, 0.49, 0.02])
    # cax = fig.add_axes([0.49, 0.25, 0.39, 0.02])
    cb = fig.colorbar(cax=cax, orientation="horizontal")
    cb.set_label("Normalized drifter transport (%)")

    if extraname is None:
        fig.savefig("figures/" + name + "/transport", bbox_inches="tight")
    else:
        fig.savefig("figures/" + name + "/" + extraname + "transport", bbox_inches="tight")
示例#22
0
def hist(lonp, latp, fname, tind='final', which='contour', vmax=None, fig=None, ax=None, \
            bins=(40,40), N=10, grid=None, xlims=None, ylims=None, C=None, Title=None,
            weights=None, Label='Final drifter location (%)', isll=True, binscale=None):
    """
    Plot histogram of given track data at time index tind.

    Inputs:
        lonp,latp   Drifter track positions in lon/lat [time x ndrifters]
        fname       Plot name to save
        tind        (optional) Default is 'final', in which case the final
                    position of each drifter in the array is found
                    and plotted. Alternatively, a time index 
                    can be input and drifters at that time will be plotted.
                    Note that once drifters hit the outer numerical boundary,
                    they are nan'ed out so this may miss some drifters.
        which       (optional) 'contour', 'pcolor', 'hexbin', 'hist2d' 
                    for type of plot used. Default 'hexbin'.
        bins        (optional) Number of bins used in histogram. Default (15,25).
        N           (optional) Number of contours to make. Default 10.
        grid        (optional) grid as read in by inout.readgrid()
        xlims       (optional) value limits on the x axis
        ylims       (optional) value limits on the y axis
        isll        Default True. Inputs are in lon/lat. If False, assume they 
                    are in projected coords.

    Note: Currently assuming we are plotting the final location 
    of each drifter regardless of tind.
    """

    if grid is None:
        loc = 'http://barataria.tamu.edu:8080/thredds/dodsC/NcML/txla_nesting6.nc'
        grid = inout.readgrid(loc)

    if isll:  # if inputs are in lon/lat, change to projected x/y
        # Change positions from lon/lat to x/y
        xp, yp = grid['basemap'](lonp, latp)
        # Need to retain nan's since basemap changes them to values
        ind = np.isnan(lonp)
        xp[ind] = np.nan
        yp[ind] = np.nan
    else:
        xp = lonp
        yp = latp

    if fig is None:
        fig = figure(figsize=(11, 10))
    else:
        fig = fig
    background(grid)  # Plot coastline and such

    # pdb.set_trace()

    if tind == 'final':
        # Find final positions of drifters
        xpc, ypc = tools.find_final(xp, yp)
    elif is_numlike(tind):
        xpc = xp[:, tind]
        ypc = yp[:, tind]
    else:  # just plot what is input if some other string
        xpc = xp.flatten()
        ypc = yp.flatten()

    if which == 'contour':

        # Info for 2d histogram
        H, xedges, yedges = np.histogram2d(xpc, ypc,
                                range=[[grid['xr'].min(), \
                                grid['xr'].max()], \
                                [grid['yr'].min(), \
                                grid['yr'].max()]],
                                bins=bins)
        # Contour Plot
        XE, YE = np.meshgrid(op.resize(xedges, 0), op.resize(yedges, 0))
        d = (H / H.sum()) * 100
        # # from http://matplotlib.1069221.n5.nabble.com/question-about-contours-and-clim-td21111.html
        # locator = ticker.MaxNLocator(50) # if you want no more than 10 contours
        # locator.create_dummy_axis()
        # locator.set_bounds(0,1)#d.min(),d.max())
        # levs = locator()
        con = contourf(XE, YE, d.T,
                       N)  #,levels=levs)#(0,15,30,45,60,75,90,105,120))
        con.set_cmap('YlOrRd')

        if Title is not None:
            set_title(Title)

        # Horizontal colorbar below plot
        cax = fig.add_axes([0.3725, 0.25, 0.48, 0.02])  #colorbar axes
        cb = colorbar(con, cax=cax, orientation='horizontal')
        cb.set_label('Final drifter location (percent)')

        # Save figure into a local directory called figures. Make directory if it doesn't exist.
        if not os.path.exists('figures'):
            os.makedirs('figures')

        savefig('figures/' + fname + 'histcon.png', bbox_inches='tight')
        # savefig('figures/' + fname + 'histcon.pdf',bbox_inches='tight')

    elif which == 'pcolor':

        # Info for 2d histogram
        H, xedges, yedges = np.histogram2d(xpc, ypc,
                                range=[[grid['xr'].min(), \
                                grid['xr'].max()], \
                                [grid['yr'].min(), \
                                grid['yr'].max()]],
                                bins=bins, weights=weights)
        # print H.T.max()

        # pdb.set_trace()
        # Pcolor plot

        # C is the z value plotted, and is normalized by the total number of drifters
        if C is None:
            C = (H.T / H.sum()) * 100
        else:
            # or, provide some other weighting
            C = (H.T / C) * 100

        p = pcolor(xedges, yedges, C, cmap='YlOrRd')

        if Title is not None:
            set_title(Title)

        # Set x and y limits
        # pdb.set_trace()
        if xlims is not None:
            xlim(xlims)
        if ylims is not None:
            ylim(ylims)

        # Horizontal colorbar below plot
        cax = fig.add_axes([0.3775, 0.25, 0.48, 0.02])  #colorbar axes
        cb = colorbar(p, cax=cax, orientation='horizontal')
        cb.set_label('Final drifter location (percent)')

        # Save figure into a local directory called figures. Make directory if it doesn't exist.
        if not os.path.exists('figures'):
            os.makedirs('figures')

        savefig('figures/' + fname + 'histpcolor.png', bbox_inches='tight')
        # savefig('figures/' + fname + 'histpcolor.pdf',bbox_inches='tight')

    elif which == 'hexbin':

        if ax is None:
            ax = gca()
        else:
            ax = ax

        if C is None:
            # C with the reduce_C_function as sum is what makes it a percent
            C = np.ones(len(xpc)) * (1. / len(xpc)) * 100
        else:
            C = C * np.ones(len(xpc)) * 100
        hb = hexbin(xpc,
                    ypc,
                    C=C,
                    cmap='YlOrRd',
                    gridsize=bins[0],
                    extent=(grid['xpsi'].min(), grid['xpsi'].max(),
                            grid['ypsi'].min(), grid['ypsi'].max()),
                    reduce_C_function=sum,
                    vmax=vmax,
                    axes=ax,
                    bins=binscale)

        # Set x and y limits
        # pdb.set_trace()
        if xlims is not None:
            xlim(xlims)
        if ylims is not None:
            ylim(ylims)

        if Title is not None:
            ax.set_title(Title)

        # Want colorbar at the given location relative to axis so this works regardless of # of subplots,
        # so convert from axis to figure coordinates
        # To do this, first convert from axis to display coords
        # transformations: http://matplotlib.org/users/transforms_tutorial.html
        ax_coords = [0.35, 0.25, 0.6,
                     0.02]  # axis: [x_left, y_bottom, width, height]
        disp_coords = ax.transAxes.transform([
            (ax_coords[0], ax_coords[1]),
            (ax_coords[0] + ax_coords[2], ax_coords[1] + ax_coords[3])
        ])  # display: [x_left,y_bottom,x_right,y_top]
        inv = fig.transFigure.inverted(
        )  # inverter object to go from display coords to figure coords
        fig_coords = inv.transform(
            disp_coords)  # figure: [x_left,y_bottom,x_right,y_top]
        # actual desired figure coords. figure: [x_left, y_bottom, width, height]
        fig_coords = [
            fig_coords[0, 0], fig_coords[0, 1],
            fig_coords[1, 0] - fig_coords[0, 0],
            fig_coords[1, 1] - fig_coords[0, 1]
        ]
        # Inlaid colorbar
        cax = fig.add_axes(fig_coords)

        # # Horizontal colorbar below plot
        # cax = fig.add_axes([0.3775, 0.25, 0.48, 0.02]) #colorbar axes
        cb = colorbar(cax=cax, orientation='horizontal')
        cb.set_label(Label)

        # pdb.set_trace()
        # Save figure into a local directory called figures. Make directory if it doesn't exist.
        if not os.path.exists('figures'):
            os.makedirs('figures')

        savefig('figures/' + fname + 'histhexbin.png', bbox_inches='tight')
        # savefig('figures/' + fname + 'histhexbin.pdf',bbox_inches='tight')

    elif which == 'hist2d':
        # pdb.set_trace()

        hist2d(xpc,
               ypc,
               bins=40,
               range=[[grid['xr'].min(), grid['xr'].max()],
                      [grid['yr'].min(), grid['yr'].max()]],
               normed=True)
        set_cmap('YlOrRd')
        # Set x and y limits
        # pdb.set_trace()
        if xlims is not None:
            xlim(xlims)
        if ylims is not None:
            ylim(ylims)

        # Horizontal colorbar below plot
        cax = fig.add_axes([0.3775, 0.25, 0.48, 0.02])  #colorbar axes
        cb = colorbar(cax=cax, orientation='horizontal')
        cb.set_label('Final drifter location (percent)')

        # Save figure into a local directory called figures. Make directory if it doesn't exist.
        if not os.path.exists('figures'):
            os.makedirs('figures')

        savefig('figures/' + fname + 'hist2d.png', bbox_inches='tight')
示例#23
0
文件: plotting.py 项目: kthyng/tracpy
def hist(
    lonp,
    latp,
    fname,
    tind="final",
    which="contour",
    vmax=None,
    fig=None,
    ax=None,
    bins=(40, 40),
    N=10,
    grid=None,
    xlims=None,
    ylims=None,
    C=None,
    Title=None,
    weights=None,
    Label="Final drifter location (%)",
    isll=True,
    binscale=None,
):
    """
    Plot histogram of given track data at time index tind.

    Args:
        lonp,latp: Drifter track positions in lon/lat [time x ndrifters]
        fname: Plot name to save
        tind (Optional): Default is 'final', in which case the final
         position of each drifter in the array is found and plotted.
         Alternatively, a time index can be input and drifters at that time
         will be plotted. Note that once drifters hit the outer numerical
         boundary, they are nan'ed out so this may miss some drifters.
        which (Optional[str]): 'contour', 'pcolor', 'hexbin', 'hist2d' for
         type of plot used. Default 'hexbin'.
        bins (Optional): Number of bins used in histogram. Default (15,25).
        N (Optional[int]): Number of contours to make. Default 10.
        grid (Optional): grid as read in by inout.readgrid()
        xlims (Optional): value limits on the x axis
        ylims (Optional): value limits on the y axis
        isll: Default True. Inputs are in lon/lat. If False, assume they
         are in projected coords.

    Note:
        Currently assuming we are plotting the final location of each drifter
        regardless of tind.
    """

    if grid is None:
        loc = "http://barataria.tamu.edu:8080/thredds/dodsC/NcML/txla_nesting6.nc"
        grid = inout.readgrid(loc)

    if isll:  # if inputs are in lon/lat, change to projected x/y
        # Change positions from lon/lat to x/y
        xp, yp = grid.proj(lonp, latp)
        # Need to retain nan's since basemap changes them to values
        ind = np.isnan(lonp)
        xp[ind] = np.nan
        yp[ind] = np.nan
    else:
        xp = lonp
        yp = latp

    if fig is None:
        fig = plt.figure(figsize=(11, 10))
    else:
        fig = fig
    background(grid)  # Plot coastline and such

    if tind == "final":
        # Find final positions of drifters
        xpc, ypc = tools.find_final(xp, yp)
    elif isinstance(tind, int):
        xpc = xp[:, tind]
        ypc = yp[:, tind]
    else:  # just plot what is input if some other string
        xpc = xp.flatten()
        ypc = yp.flatten()

    if which == "contour":

        # Info for 2d histogram
        H, xedges, yedges = np.histogram2d(
            xpc, ypc, range=[[grid.x_rho.min(), grid.x_rho.max()], [grid.y_rho.min(), grid.y_rho.max()]], bins=bins
        )

        # Contour Plot
        XE, YE = np.meshgrid(op.resize(xedges, 0), op.resize(yedges, 0))
        d = (H / H.sum()) * 100
        # # from http://matplotlib.1069221.n5.nabble.com/question-about-contours-and-clim-td21111.html
        # locator = ticker.MaxNLocator(50) # if you want no more than 10 contours
        # locator.create_dummy_axis()
        # locator.set_bounds(0,1)#d.min(),d.max())
        # levs = locator()
        con = fig.contourf(XE, YE, d.T, N)  # ,levels=levs)#(0,15,30,45,60,75,90,105,120))
        con.set_cmap("YlOrRd")

        if Title is not None:
            plt.set_title(Title)

        # Horizontal colorbar below plot
        cax = fig.add_axes([0.3725, 0.25, 0.48, 0.02])  # colorbar axes
        cb = fig.colorbar(con, cax=cax, orientation="horizontal")
        cb.set_label("Final drifter location (percent)")

        # Save figure into a local directory called figures. Make directory
        # if it doesn't exist.
        if not os.path.exists("figures"):
            os.makedirs("figures")

        fig.savefig("figures/" + fname + "histcon.png", bbox_inches="tight")

    elif which == "pcolor":

        # Info for 2d histogram
        H, xedges, yedges = np.histogram2d(
            xpc,
            ypc,
            range=[[grid.x_rho.min(), grid.x_rho.max()], [grid.y_rho.min(), grid.y_rho.max()]],
            bins=bins,
            weights=weights,
        )

        # Pcolor plot
        # C is the z value plotted, and is normalized by the total number of
        # drifters
        if C is None:
            C = (H.T / H.sum()) * 100
        else:
            # or, provide some other weighting
            C = (H.T / C) * 100

        p = plt.pcolor(xedges, yedges, C, cmap="YlOrRd")

        if Title is not None:
            plt.set_title(Title)

        # Set x and y limits
        if xlims is not None:
            plt.xlim(xlims)
        if ylims is not None:
            plt.ylim(ylims)

        # Horizontal colorbar below plot
        cax = fig.add_axes([0.3775, 0.25, 0.48, 0.02])  # colorbar axes
        cb = fig.colorbar(p, cax=cax, orientation="horizontal")
        cb.set_label("Final drifter location (percent)")

        # Save figure into a local directory called figures. Make directory
        # if it doesn't exist.
        if not os.path.exists("figures"):
            os.makedirs("figures")

        fig.savefig("figures/" + fname + "histpcolor.png", bbox_inches="tight")
        # savefig('figures/' + fname + 'histpcolor.pdf',bbox_inches='tight')

    elif which == "hexbin":

        if ax is None:
            ax = plt.gca()
        else:
            ax = ax

        if C is None:
            # C with the reduce_C_function as sum is what makes it a percent
            C = np.ones(len(xpc)) * (1.0 / len(xpc)) * 100
        else:
            C = C * np.ones(len(xpc)) * 100
        hb = plt.hexbin(
            xpc,
            ypc,
            C=C,
            cmap="YlOrRd",
            gridsize=bins[0],
            extent=(grid.x_psi.min(), grid.x_psi.max(), grid.y_psi.min(), grid.y_psi.max()),
            reduce_C_function=sum,
            vmax=vmax,
            axes=ax,
            bins=binscale,
        )

        # Set x and y limits
        if xlims is not None:
            plt.xlim(xlims)
        if ylims is not None:
            plt.ylim(ylims)

        if Title is not None:
            ax.set_title(Title)

        # Want colorbar at the given location relative to axis so this works
        # regardless of # of subplots, so convert from axis to figure
        # coordinates. To do this, first convert from axis to display coords
        # transformations:
        # http://matplotlib.org/users/transforms_tutorial.html
        # axis: [x_left, y_bottom, width, height]
        ax_coords = [0.35, 0.25, 0.6, 0.02]
        # display: [x_left,y_bottom,x_right,y_top]
        disp_coords = ax.transAxes.transform(
            [(ax_coords[0], ax_coords[1]), (ax_coords[0] + ax_coords[2], ax_coords[1] + ax_coords[3])]
        )
        # inverter object to go from display coords to figure coords
        inv = fig.transFigure.inverted()
        # figure: [x_left,y_bottom,x_right,y_top]
        fig_coords = inv.transform(disp_coords)
        # actual desired figure coords. figure:
        # [x_left, y_bottom, width, height]
        fig_coords = [
            fig_coords[0, 0],
            fig_coords[0, 1],
            fig_coords[1, 0] - fig_coords[0, 0],
            fig_coords[1, 1] - fig_coords[0, 1],
        ]
        # Inlaid colorbar
        cax = fig.add_axes(fig_coords)

        # # Horizontal colorbar below plot
        # cax = fig.add_axes([0.3775, 0.25, 0.48, 0.02]) # colorbar axes
        cb = fig.colorbar(hb, cax=cax, orientation="horizontal")
        cb.set_label(Label)

        # Save figure into a local directory called figures. Make directory
        # if it doesn't exist.
        if not os.path.exists("figures"):
            os.makedirs("figures")

        fig.savefig("figures/" + fname + "histhexbin.png", bbox_inches="tight")
        # savefig('figures/' + fname + 'histhexbin.pdf',bbox_inches='tight')

    elif which == "hist2d":

        plt.hist2d(
            xpc,
            ypc,
            bins=40,
            range=[[grid.x_rho.min(), grid.x_rho.max()], [grid.y_rho.min(), grid.y_rho.max()]],
            normed=True,
        )
        plt.set_cmap("YlOrRd")
        # Set x and y limits
        if xlims is not None:
            xlim(xlims)
        if ylims is not None:
            ylim(ylims)

        # Horizontal colorbar below plot
        cax = fig.add_axes([0.3775, 0.25, 0.48, 0.02])  # colorbar axes
        cb = fig.colorbar(cax=cax, orientation="horizontal")
        cb.set_label("Final drifter location (percent)")

        # Save figure into a local directory called figures. Make directory
        # if it doesn't exist.
        if not os.path.exists("figures"):
            os.makedirs("figures")

        fig.savefig("figures/" + fname + "hist2d.png", bbox_inches="tight")
示例#24
0
def hist(lonp, latp, fname, tind='final', which='contour', \
            bins=(40,40), N=10, grid=None, xlims=None, ylims=None):
    """
    Plot histogram of given track data at time index tind.

    Inputs:
        lonp,latp   Drifter track positions in lon/lat [time x ndrifters]
        fname       Plot name to save
        tind        (optional) Default is 'final', in which case the final
                    position of each drifter in the array is found
                    and plotted. Alternatively, a time index 
                    can be input and drifters at that time will be plotted.
                    Note that once drifters hit the outer numerical boundary,
                    they are nan'ed out so this may miss some drifters.
        which       (optional) 'contour', 'pcolor', 'hexbin', 'hist2d' 
                    for type of plot used. Default 'hexbin'.
        bins        (optional) Number of bins used in histogram. Default (15,25).
        N           (optional) Number of contours to make. Default 10.
        grid        (optional) grid as read in by inout.readgrid()
        xlims       (optional) value limits on the x axis
        ylims       (optional) value limits on the y axis

    Note: Currently assuming we are plotting the final location 
    of each drifter regardless of tind.
    """

    if grid is None:
        loc = 'http://barataria.tamu.edu:8080/thredds/dodsC/NcML/txla_nesting6.nc'
        grid = inout.readgrid(loc)

    # Change positions from lon/lat to x/y
    xp, yp = grid['basemap'](lonp, latp)
    # Need to retain nan's since basemap changes them to values
    ind = np.isnan(lonp)
    xp[ind] = np.nan
    yp[ind] = np.nan

    fig = figure(figsize=(12,10))
    background(grid) # Plot coastline and such

    # pdb.set_trace()

    if tind == 'final':
        # Find final positions of drifters
        xpc, ypc = tools.find_final(xp, yp)
    elif is_numlike(tind):
        xpc = xp[:,tind]
        ypc = yp[:,tind]
    else: # just plot what is input if some other string
        xpc = xp.flatten()
        ypc = yp.flatten()

    if which == 'contour':

        # Info for 2d histogram
        H, xedges, yedges = np.histogram2d(xpc, ypc,
                                range=[[grid['xr'].min(), \
                                grid['xr'].max()], \
                                [grid['yr'].min(), \
                                grid['yr'].max()]],
                                bins=bins)
        # Contour Plot
        XE, YE = np.meshgrid(op.resize(xedges,0), op.resize(yedges,0))
        d = (H/H.sum())*100
        # # from http://matplotlib.1069221.n5.nabble.com/question-about-contours-and-clim-td21111.html
        # locator = ticker.MaxNLocator(50) # if you want no more than 10 contours
        # locator.create_dummy_axis()
        # locator.set_bounds(0,1)#d.min(),d.max())
        # levs = locator()
        con = contourf(XE, YE, d.T, N)#,levels=levs)#(0,15,30,45,60,75,90,105,120))
        con.set_cmap('YlOrRd')
        # Horizontal colorbar below plot
        cax = fig.add_axes([0.3725, 0.25, 0.48, 0.02]) #colorbar axes
        cb = colorbar(con, cax=cax, orientation='horizontal')
        cb.set_label('Final drifter location (percent)')

        # Save figure into a local directory called figures. Make directory if it doesn't exist.
        if not os.path.exists('figures'):
            os.makedirs('figures')

        savefig('figures/' + fname + 'histcon.png',bbox_inches='tight')
        # savefig('figures/' + fname + 'histcon.pdf',bbox_inches='tight')

    elif which == 'pcolor':

        # Info for 2d histogram
        H, xedges, yedges = np.histogram2d(xpc, ypc,
                                range=[[grid['xr'].min(), \
                                grid['xr'].max()], \
                                [grid['yr'].min(), \
                                grid['yr'].max()]],
                                bins=bins)
        # Pcolor plot
        p = pcolor(xedges, yedges, (H.T/H.sum())*100, cmap='YlOrRd')

        # Set x and y limits
        # pdb.set_trace()
        if xlims is not None:
            xlim(xlims)
        if ylims is not None:
            ylim(ylims)

        # Horizontal colorbar below plot
        cax = fig.add_axes([0.3775, 0.25, 0.48, 0.02]) #colorbar axes
        cb = colorbar(p, cax=cax, orientation='horizontal')
        cb.set_label('Final drifter location (percent)')

        # Save figure into a local directory called figures. Make directory if it doesn't exist.
        if not os.path.exists('figures'):
            os.makedirs('figures')

        savefig('figures/' + fname + 'histpcolor.png', bbox_inches='tight')
        # savefig('figures/' + fname + 'histpcolor.pdf',bbox_inches='tight')

    elif which == 'hexbin':

        # C with the reduce_C_function as sum is what makes it a percent
        C = np.ones(len(xpc))*(1./len(xpc))*100
        hb = hexbin(xpc, ypc, C=C, cmap='YlOrRd', gridsize=bins[0], 
                extent=(grid['xr'].min(), grid['xr'].max(), 
                grid['yr'].min(), grid['yr'].max()), 
                reduce_C_function=sum)

        # Set x and y limits
        # pdb.set_trace()
        if xlims is not None:
            xlim(xlims)
        if ylims is not None:
            ylim(ylims)

        # Horizontal colorbar below plot
        cax = fig.add_axes([0.3775, 0.25, 0.48, 0.02]) #colorbar axes
        cb = colorbar(cax=cax, orientation='horizontal')
        cb.set_label('Final drifter location (percent)')

        # pdb.set_trace()
        # Save figure into a local directory called figures. Make directory if it doesn't exist.
        if not os.path.exists('figures'):
            os.makedirs('figures')

        savefig('figures/' + fname + 'histhexbin.png', bbox_inches='tight')
        # savefig('figures/' + fname + 'histhexbin.pdf',bbox_inches='tight')

    elif which == 'hist2d':
        # pdb.set_trace()

        hist2d(xpc, ypc, bins=40, 
                range=[[grid['xr'].min(), grid['xr'].max()], 
                [grid['yr'].min(), grid['yr'].max()]], normed=True)
        set_cmap('YlOrRd')
        # Set x and y limits
        # pdb.set_trace()
        if xlims is not None:
            xlim(xlims)
        if ylims is not None:
            ylim(ylims)

        # Horizontal colorbar below plot
        cax = fig.add_axes([0.3775, 0.25, 0.48, 0.02]) #colorbar axes
        cb = colorbar(cax=cax,orientation='horizontal')
        cb.set_label('Final drifter location (percent)')

        # Save figure into a local directory called figures. Make directory if it doesn't exist.
        if not os.path.exists('figures'):
            os.makedirs('figures')

        savefig('figures/' + fname + 'hist2d.png',bbox_inches='tight')
示例#25
0
def readfields(tind, grid, nc, z0=None, zpar=None, zparuv=None):
    """
    readfields()
    Kristen Thyng, March 2013

    Reads in model output in order to calculate fluxes and z grid
    properties to send into step.f95.
    Should be called initially and then subsequently each time loop.
    All arrays are changed to Fortran ordering (from Python ordering)
    and to tracmass variables ordering from ROMS ordering
    i.e. from [t,k,j,i] to [i,j,k,t]
    right away after reading in.

    Args:
        tind: Single time index for model output to read in
        grid: Dictionary containing all necessary time-independent grid
         fields
        nc: NetCDF object for relevant files
        z0 (Optional): if doing 2d isoslice, z0 contains string saying which
         kind
        zpar (Optional): if doing 2d isoslice, zpar is the
         depth/level/density at which we are to get the level
        zparuv (Optional): Use this if the k index for the model output
         fields (e.g, u, v) is different from the k index in the grid. This
         might happen if, for example, only the surface current were saved,
         but the model run originally did have many layers. This parameter
         represents the k index for the u and v output, not for the grid.

    Returns:
        * uflux1 - Zonal (x) flux at tind
        * vflux1 - Meriodional (y) flux at tind
        * dzt - Height of k-cells in 3 dim in meters on rho vertical grid.
          [imt,jmt,km]
        * zrt - Time-dependent depths of cells on vertical rho grid (meters).
          For the isoslice case, zrt ends up with 1 vertical level which
          contains the depths for the vertical center of the cell for that
          level.
        * zwt - Time-dependent depths of cells on vertical w grid (meters).
          zwt always contains the depths at the vertical cell edges for the
          whole 3D grid and the correct depths can be accessed using the
          drifter indices.

    Array descriptions:
     * u,v - Zonal (x) and meridional (y) velocities [imt,jmt,km] (m/s)
     * ssh - Free surface [imt,jmt] (m)
     * dz - Height of k-cells in 1 dim [km]
       From coord.f95: z coordinates (z>0 going up) for layers in meters
       bottom layer: k=0; surface layer: k=KM and zw=0
       dz = layer thickness
     * zt - Depths (negative) in meters of w vertical grid [imt,jmt,km+1]
     * dzt - Height of k-cells in 3 dim in meters on rho vertical grid.
       [imt,jmt,km]
     * dzt0 - Height of k-cells in 2 dim. [imt,jmt]
     * dzu - Height of each u grid cell [imt-1,jmt,km]
     * dzv - Height of each v grid cell [imt,jmt-1,km]
     * uflux1 - Zonal (x) fluxes [imt-1,jmt,km] (m^3/s)?
     * vflux1 - Meriodional (y) fluxes [imt,jmt-1,km] (m^3/s)?

    """

    # this parameter is in case there is less model output available
    # vertically than was actually run on the grid
    if zparuv is None:
        zparuv = zpar

    # tic_temp = time.time()
    # Read in model output for index tind
    if z0 == 's':  # read in less model output to begin with, to save time
        if nc.variables['u'].ndim == 4:
            u = nc.variables['u'][tind, zparuv, :, :]
            v = nc.variables['v'][tind, zparuv, :, :]
        elif nc.variables['u'].ndim == 3:
            u = nc.variables['u'][tind, :, :]
            v = nc.variables['v'][tind, :, :]
        if 'zeta' in nc.variables:
            # [t,j,i], ssh in tracmass
            ssh = nc.variables['zeta'][tind, :, :]
            sshread = True
        else:
            sshread = False
    else:
        u = nc.variables['u'][tind, :, :, :]
        v = nc.variables['v'][tind, :, :, :]
        if 'zeta' in nc.variables:
            # [t,j,i], ssh in tracmass
            ssh = nc.variables['zeta'][tind, :, :]
            sshread = True
        else:
            sshread = False

    # Use octant to calculate depths for the appropriate vertical grid
    # parameters have to transform a few back to ROMS coordinates and python
    # ordering for this
    if sshread:
        zwt = octant.depths.get_zw(grid.Vtransform,
                                   grid.Vstretching,
                                   grid.km + 1,
                                   grid.theta_s,
                                   grid.theta_b,
                                   grid.h,
                                   grid.hc,
                                   zeta=ssh,
                                   Hscale=3)
    else:  # if ssh isn't available, approximate as 0
        zwt = octant.depths.get_zw(grid.Vtransform,
                                   grid.Vstretching,
                                   grid.km + 1,
                                   grid.theta_s,
                                   grid.theta_b,
                                   grid.h,
                                   grid.hc,
                                   zeta=0,
                                   Hscale=3)

    # Change dzt to tracmass/fortran ordering
    dzt = zwt[1:, :, :] - zwt[:-1, :, :]

    # also want depths on rho grid
    if sshread:
        zrt = octant.depths.get_zrho(grid.Vtransform,
                                     grid.Vstretching,
                                     grid.km,
                                     grid.theta_s,
                                     grid.theta_b,
                                     grid.h,
                                     grid.hc,
                                     zeta=ssh,
                                     Hscale=3)
    else:
        zrt = octant.depths.get_zrho(grid.Vtransform,
                                     grid.Vstretching,
                                     grid.km,
                                     grid.theta_s,
                                     grid.theta_b,
                                     grid.h,
                                     grid.hc,
                                     zeta=0,
                                     Hscale=3)

    dzu = .5 * (dzt[:, :, 0:grid.imt - 1] + dzt[:, :, 1:grid.imt])
    dzv = .5 * (dzt[:, 0:grid.jmt - 1, :] + dzt[:, 1:grid.jmt, :])

    # I think I can avoid this loop for the isoslice case
    if z0 is None:  # 3d case
        uflux1 = u * dzu * grid.dyu
        vflux1 = v * dzv * grid.dxv
    elif z0 == 's':  # want a specific s level zpar
        uflux1 = u * dzu[zpar, :, :] * grid.dyu
        vflux1 = v * dzv[zpar, :, :] * grid.dxv
        dzt = dzt[zpar, :, :]
        zrt = zrt[zpar, :, :]
    elif z0 == 'rho' or z0 == 'salt' or z0 == 'temp':
        # the vertical setup we're selecting an isovalue of
        vert = nc.variables[z0][tind, :, :, :]
        # Calculate flux and then take slice
        uflux1 = octant.tools.isoslice(u * dzu * grid.dyu, op.resize(vert, 2),
                                       zpar)
        vflux1 = octant.tools.isoslice(v * dzv * grid.dxv, op.resize(vert, 1),
                                       zpar)
        dzt = octant.tools.isoslice(dzt, vert, zpar)
        zrt = octant.tools.isoslice(zrt, vert, zpar)
    elif z0 == 'z':
        # Calculate flux and then take slice
        uflux1 = octant.tools.isoslice(u * dzu * grid.dyu, op.resize(zrt, 2),
                                       zpar)
        vflux1 = octant.tools.isoslice(v * dzv * grid.dxv, op.resize(zrt, 1),
                                       zpar)
        dzt = octant.tools.isoslice(dzt, zrt, zpar)
        zrt = np.ones(uflux1.shape) * zpar  # array of the input desired depth

    # make sure that all fluxes have a placeholder for depth
    if isinstance(z0, str):
        uflux1 = uflux1.reshape(np.append(1, uflux1.shape))
        vflux1 = vflux1.reshape(np.append(1, vflux1.shape))
        dzt = dzt.reshape(np.append(1, dzt.shape))
        zrt = zrt.reshape(np.append(1, zrt.shape))

    return uflux1, vflux1, dzt, zrt, zwt
示例#26
0
文件: inout.py 项目: gijs/tracpy
def readfields(tind,grid,nc,z0=None, zpar=None, zparuv=None):
    '''
    readfields()
    Kristen Thyng, March 2013

    Reads in model output in order to calculate fluxes and z grid 
    properties to send into step.f95.
    Should be called initially and then subsequently each time loop.
    All arrays are changed to Fortran ordering (from Python ordering)
    and to tracmass variables ordering from ROMS ordering 
    i.e. from [t,k,j,i] to [i,j,k,t]
    right away after reading in.

    Input:
     tind   Single time index for model output to read in
     grid   Dictionary containing all necessary time-independent grid fields
     nc     NetCDF object for relevant files
     z0     (optional) if doing 2d isoslice, z0 contains string saying which kind
     zpar   (optional) if doing 2d isoslice, zpar is the depth/level/density
            at which we are to get the level
     zparuv (optional) Use this if the k index for the model output fields (e.g, u, v) is different
            from the k index in the grid. This might happen if, for example, only the surface current
            were saved, but the model run originally did have many layers. This parameter
            represents the k index for the u and v output, not for the grid.

    Output:
     uflux1     Zonal (x) flux at tind
     vflux1     Meriodional (y) flux at tind
     dzt        Height of k-cells in 3 dim in meters on rho vertical grid. [imt,jmt,km]
     zrt        Time-dependent depths of cells on vertical rho grid (meters).
                For the isoslice case, zrt ends up with 1 vertical level which contains
                the depths for the vertical center of the cell for that level.
     zwt        Time-dependent depths of cells on vertical w grid (meters). zwt always
                contains the depths at the vertical cell edges for the whole 3D grid
                and the correct depths can be accessed using the drifter indices.

    Array descriptions:
     u,v        Zonal (x) and meridional (y) velocities [imt,jmt,km] (m/s)
     ssh        Free surface [imt,jmt] (m)
     dz         Height of k-cells in 1 dim [km]
                From coord.f95: z coordinates (z>0 going up) for layers in meters 
                bottom layer: k=0; surface layer: k=KM and zw=0
                dz = layer thickness
     zt         Depths (negative) in meters of w vertical grid [imt,jmt,km+1]
     dzt        Height of k-cells in 3 dim in meters on rho vertical grid. [imt,jmt,km]
     dzt0       Height of k-cells in 2 dim. [imt,jmt]
     dzu        Height of each u grid cell [imt-1,jmt,km]
     dzv        Height of each v grid cell [imt,jmt-1,km]
     uflux1     Zonal (x) fluxes [imt-1,jmt,km] (m^3/s)?
     vflux1     Meriodional (y) fluxes [imt,jmt-1,km] (m^3/s)?
    '''

    # this parameter is in case there is less model output available vertically than
    # was actually run on the grid
    # pdb.set_trace()
    if zparuv is None:
        zparuv = zpar

    # tic_temp = time.time()
    # Read in model output for index tind
    if z0 == 's': # read in less model output to begin with, to save time
        u = nc.variables['u'][tind,zparuv,:,:] 
        v = nc.variables['v'][tind,zparuv,:,:]
        if 'zeta' in nc.variables:
            ssh = nc.variables['zeta'][tind,:,:] # [t,j,i], ssh in tracmass
            sshread = True
        else:
            sshread = False
    else:
        u = nc.variables['u'][tind,:,:,:] 
        v = nc.variables['v'][tind,:,:,:]
        if 'zeta' in nc.variables:
            ssh = nc.variables['zeta'][tind,:,:] # [t,j,i], ssh in tracmass
            sshread = True
        else:
            sshread = False

    h = grid['h'].T.copy(order='c')
    # Use octant to calculate depths for the appropriate vertical grid parameters
    # have to transform a few back to ROMS coordinates and python ordering for this
    if sshread:
        zwt = octant.depths.get_zw(grid['Vtransform'], grid['Vstretching'], grid['km']+1, grid['theta_s'], grid['theta_b'], 
                        h, grid['hc'], zeta=ssh, Hscale=3)
    else: # if ssh isn't available, approximate as 0
        zwt = octant.depths.get_zw(grid['Vtransform'], grid['Vstretching'], grid['km']+1, grid['theta_s'], grid['theta_b'], 
                        h, grid['hc'], zeta=0, Hscale=3)
    # Change dzt to tracmass/fortran ordering
    dzt = zwt[1:,:,:] - zwt[:-1,:,:]

    # also want depths on rho grid
    if sshread:
        zrt = octant.depths.get_zrho(grid['Vtransform'], grid['Vstretching'], grid['km'], grid['theta_s'], grid['theta_b'], 
                        h, grid['hc'], zeta=ssh, Hscale=3)
    else:
        zrt = octant.depths.get_zrho(grid['Vtransform'], grid['Vstretching'], grid['km'], grid['theta_s'], grid['theta_b'], 
                        h, grid['hc'], zeta=0, Hscale=3)

    dzu = .5*(dzt[:,:,0:grid['imt']-1] + dzt[:,:,1:grid['imt']])
    dzv = .5*(dzt[:,0:grid['jmt']-1,:] + dzt[:,1:grid['jmt'],:])

    # Change order back to ROMS/python for this calculation
    dyu = grid['dyu'].T.copy(order='c')
    dxv = grid['dxv'].T.copy(order='c')

    # I think I can avoid this loop for the isoslice case
    if z0 == None: # 3d case
        uflux1 = u*dzu*dyu
        vflux1 = v*dzv*dxv
    elif z0 == 's': # want a specific s level zpar
        uflux1 = u*dzu[zpar,:,:]*dyu
        vflux1 = v*dzv[zpar,:,:]*dxv
        dzt = dzt[zpar,:,:]
        zrt = zrt[zpar,:,:]
    elif z0 == 'rho' or z0 == 'salt' or z0 == 'temp':
        # the vertical setup we're selecting an isovalue of
        vert = nc.variables[z0][tind,:,:,:]
        # Calculate flux and then take slice
        uflux1 = octant.tools.isoslice(u*dzu*dyu,op.resize(vert,2),zpar)
        vflux1 = octant.tools.isoslice(v*dzv*dxv,op.resize(vert,1),zpar)
        dzt = octant.tools.isoslice(dzt,vert,zpar)
        zrt = octant.tools.isoslice(zrt,vert,zpar)
    elif z0 == 'z':
        # Calculate flux and then take slice
        uflux1 = octant.tools.isoslice(u*dzu*dyu,op.resize(zrt,2),zpar)
        vflux1 = octant.tools.isoslice(v*dzv*dxv,op.resize(zrt,1),zpar)
        dzt = octant.tools.isoslice(dzt,zrt,zpar)
        zrt = np.ones(uflux1.shape)*zpar # array of the input desired depth

    # Change all back to tracmass/fortran ordering if being used again
    # This is faster than copying arrays
    # Don't bother changing order of these arrays since I have to change it in 
    # run.py anyway (concatenate appears not to preserve ordering)
    uflux1 = uflux1.T
    vflux1 = vflux1.T
    dzt = np.asfortranarray(dzt.T)
    zrt = np.asfortranarray(zrt.T)
    if sshread:
        ssh = np.asfortranarray(ssh.T)
    zwt = np.asfortranarray(zwt.T)

    # make sure that all fluxes have a placeholder for depth
    if is_string_like(z0):
        uflux1 = uflux1.reshape(np.append(uflux1.shape,1))
        vflux1 = vflux1.reshape(np.append(vflux1.shape,1))
        dzt = dzt.reshape(np.append(dzt.shape,1))
        zrt = zrt.reshape(np.append(zrt.shape,1))

    return uflux1, vflux1, dzt, zrt, zwt
示例#27
0
import pdb
import op

seed = "C"

loccalcs = "calcs/"
loctracks = "tracks/"

# Loop through tracks files and run calculations
Files = glob.glob(loctracks + seed + "*.nc")

# Highest res case for comparison
dc = netCDF.Dataset(loctracks + seed + "_dx250_V25.nc")  # control case
Uc = dc.variables["U"][:]
Vc = dc.variables["V"][:]
Sc = np.sqrt(op.resize(Uc, 1) ** 2 + op.resize(Vc, 0) ** 2)
dc.close()

# lonpc = dc.variables['lonp'][:]; latpc = dc.variables['latp'][:]; tpc = dc.variables['tp'][:];

loc = "http://barataria.tamu.edu:8080/thredds/dodsC/NcML/txla_nesting6.nc"
grid = tracpy.inout.readgrid(loc)  # grid file, Gulf model domain
# grid = tracpy.inout.readgrid(loc[1], vert_filename=loc[0], llcrnrlon=llcrnrlon, urcrnrlon=urcrnrlon,
#                                   llcrnrlat=llcrnrlat, urcrnrlat=urcrnrlat)  # grid file, Gulf model domain

for File in Files:

    print File

    # Read in tracks
    d = netCDF.Dataset(File)