示例#1
0
def main(argv: Sequence[str]) -> None:
    if len(argv) > 1:
        raise app.UsageError('Too many command-line arguments.')

    param_names, param_values = zip(
        *[convert_param_spec(spec) for spec in FLAGS.parameters])
    header = (['game_name'] + list(param_names) +
              ['fictitious_play_iteration_time'])
    timing_results = []
    for game_name in FLAGS.games:
        for param_tuple in itertools.product(*param_values):
            result_line = [game_name] + [str(p) for p in param_tuple]
            print('Computing timings for:', ' '.join(result_line))
            param_dict = dict(zip(param_names, param_tuple))
            game = pyspiel.load_game(game_name, param_dict)
            t0 = time.time()
            fp = fictitious_play.FictitiousPlay(game)
            fp.iteration()
            elapsed = time.time() - t0
            result_line.append(f'{elapsed:.4f}s')
            print(' '.join(result_line))
            timing_results.append(result_line)

    print('\nRESULTS:')
    print(' '.join(header))
    for line in timing_results:
        print(' '.join([str(v) for v in line]))
    def test_dqn_fp_python_game(self):
        """Checks if fictitious play with DQN-based value function works."""
        game = crowd_modelling.MFGCrowdModellingGame()
        dfp = fictitious_play.FictitiousPlay(game)

        uniform_policy = policy.UniformRandomPolicy(game)
        dist = distribution.DistributionPolicy(game, uniform_policy)
        envs = [
            rl_environment.Environment(game,
                                       mfg_distribution=dist,
                                       mfg_population=p)
            for p in range(game.num_players())
        ]
        dqn_agent = dqn.DQN(
            0,
            state_representation_size=envs[0].observation_spec()["info_state"]
            [0],
            num_actions=envs[0].action_spec()["num_actions"],
            hidden_layers_sizes=[256, 128, 64],
            replay_buffer_capacity=100,
            batch_size=5,
            epsilon_start=0.02,
            epsilon_end=0.01)

        for _ in range(10):
            dfp.iteration(rl_br_agent=dqn_agent)

        dfp_policy = dfp.get_policy()
        nash_conv_dfp = nash_conv.NashConv(game, dfp_policy)

        self.assertAlmostEqual(nash_conv_dfp.nash_conv(), 1.0558451955622807)
示例#3
0
    def test_fp_cpp_game(self):
        """Checks if fictitious play works."""
        game = pyspiel.load_game("mfg_crowd_modelling")
        fp = fictitious_play.FictitiousPlay(game)
        for _ in range(10):
            fp.iteration()
        fp_policy = fp.get_policy()
        nash_conv_fp = nash_conv.NashConv(game, fp_policy)

        self.assertAlmostEqual(nash_conv_fp.nash_conv(), 0.9908032626911343)
示例#4
0
    def test_fp_python_game(self):
        """Checks if fictitious play works."""
        game = crowd_modelling.MFGCrowdModellingGame()
        fp = fictitious_play.FictitiousPlay(game)
        for _ in range(10):
            fp.iteration()
        fp_policy = fp.get_policy()
        nash_conv_fp = nash_conv.NashConv(game, fp_policy)

        self.assertAlmostEqual(nash_conv_fp.nash_conv(), 0.9908032626911343)
示例#5
0
def mean_field_fictitious_play(mfg_game,
                               number_of_iterations,
                               compute_metrics=False):
    fp = mean_field_fictitious_play_module.FictitiousPlay(mfg_game)
    tick_time = time.time()
    for _ in range(number_of_iterations):
        fp.iteration()
    timing = time.time() - tick_time
    fp_policy = fp.get_policy()
    # print('learning done')
    if compute_metrics:
        distribution_mfg = distribution_module.DistributionPolicy(
            mfg_game, fp_policy)
        # print('distribution done')
        policy_value_ = policy_value.PolicyValue(
            mfg_game, distribution_mfg,
            fp_policy).value(mfg_game.new_initial_state())
        nash_conv_fp = nash_conv_module.NashConv(mfg_game, fp_policy)
        return timing, fp_policy, nash_conv_fp, policy_value_
    return timing, fp_policy
示例#6
0
def main(argv: Sequence[str]) -> None:
  # TODO(perolat): move to an example directory.
  if len(argv) > 1:
    raise app.UsageError('Too many command-line arguments.')
  mfg_game = pyspiel.load_game(FLAGS.game, GAME_SETTINGS.get(FLAGS.game, {}))
  mfg_state = mfg_game.new_initial_state()
  print('Playing a single arbitrary trajectory')
  while not mfg_state.is_terminal():
    print('State obs string:', mfg_state.observation_string(0))
    if mfg_state.current_player() == pyspiel.PlayerId.CHANCE:
      action_list, prob_list = zip(*mfg_state.chance_outcomes())
      action = np.random.choice(action_list, p=prob_list)
      mfg_state.apply_action(action)
    elif mfg_state.current_player() == pyspiel.PlayerId.MEAN_FIELD:
      dist_to_register = mfg_state.distribution_support()
      n_states = len(dist_to_register)
      dist = [1.0 / n_states for _ in range(n_states)]
      mfg_state.update_distribution(dist)
    else:
      legal_list = mfg_state.legal_actions()
      action = np.random.choice(legal_list)
      mfg_state.apply_action(action)

  print('compute nashconv')
  uniform_policy = policy.UniformRandomPolicy(mfg_game)
  nash_conv_fp = nash_conv.NashConv(mfg_game, uniform_policy)
  print('Nashconv:', nash_conv_fp.nash_conv())

  print('compute distribution')
  mfg_dist = distribution.DistributionPolicy(mfg_game, uniform_policy)
  br_value = best_response_value.BestResponse(
      mfg_game, mfg_dist, value.TabularValueFunction(mfg_game))
  py_value = policy_value.PolicyValue(mfg_game, mfg_dist, uniform_policy,
                                      value.TabularValueFunction(mfg_game))
  print(
      'Value of a best response policy to a uniform policy '
      '(computed with best_response_value)',
      br_value(mfg_game.new_initial_state()))
  print('Value of the uniform policy:', py_value(mfg_game.new_initial_state()))
  greedy_pi = greedy_policy.GreedyPolicy(mfg_game, None, br_value)
  greedy_pi = greedy_pi.to_tabular()
  pybr_value = policy_value.PolicyValue(mfg_game, mfg_dist, greedy_pi,
                                        value.TabularValueFunction(mfg_game))
  print(
      'Value of a best response policy to a uniform policy (computed at the '
      'value of the greedy policy of the best response value)',
      pybr_value(mfg_game.new_initial_state()))
  print('merge')
  merged_pi = fictitious_play.MergedPolicy(
      mfg_game, list(range(mfg_game.num_players())),
      [uniform_policy, greedy_pi],
      [mfg_dist, distribution.DistributionPolicy(mfg_game, greedy_pi)],
      [0.5, 0.5])

  merged_pi_value = policy_value.PolicyValue(
      mfg_game, mfg_dist, merged_pi, value.TabularValueFunction(mfg_game))
  print(br_value(mfg_game.new_initial_state()))
  print(py_value(mfg_game.new_initial_state()))
  print(merged_pi_value(mfg_game.new_initial_state()))
  print((br_value(mfg_game.new_initial_state()) +
         py_value(mfg_game.new_initial_state())) / 2)
  print('fp')
  fp = fictitious_play.FictitiousPlay(mfg_game)
  for j in range(100):
    print('Iteration', j, 'of fictitious play')
    fp.iteration()
    fp_policy = fp.get_policy()
    nash_conv_fp = nash_conv.NashConv(mfg_game, fp_policy)
    print('Nashconv of the current FP policy', nash_conv_fp.nash_conv())
  print('md')
  md = mirror_descent.MirrorDescent(mfg_game,
                                    value.TabularValueFunction(mfg_game))
  for j in range(10):
    print('Iteration', j, 'of mirror descent')
    md.iteration()
    md_policy = md.get_policy()
    nash_conv_md = nash_conv.NashConv(mfg_game, md_policy)
    print('Nashconv of the current MD policy', nash_conv_md.nash_conv())
示例#7
0
def main(argv: Sequence[str]) -> None:
    # TODO(perolat): move to an example directory.
    if len(argv) > 1:
        raise app.UsageError('Too many command-line arguments.')
    game_settings = {
        'only_distribution_reward': True,
        'forbidden_states': '[0|0;0|1]',
        'initial_distribution': '[0|2;0|3]',
        'initial_distribution_value': '[0.5;0.5]',
    }
    mfg_game = pyspiel.load_game(FLAGS.game, game_settings)
    mfg_state = mfg_game.new_initial_state()
    while not mfg_state.is_terminal():
        print(mfg_state.observation_string(0))
        if mfg_state.current_player() == pyspiel.PlayerId.CHANCE:
            action_list, prob_list = zip(*mfg_state.chance_outcomes())
            action = np.random.choice(action_list, p=prob_list)
            mfg_state.apply_action(action)
        elif mfg_state.current_player() == pyspiel.PlayerId.MEAN_FIELD:
            dist_to_register = mfg_state.distribution_support()
            n_states = len(dist_to_register)
            dist = [1.0 / n_states for _ in range(n_states)]
            mfg_state.update_distribution(dist)
        else:
            legal_list = mfg_state.legal_actions()
            action = np.random.choice(legal_list)
            mfg_state.apply_action(action)

    print('compute nashconv')
    uniform_policy = policy.UniformRandomPolicy(mfg_game)
    nash_conv_fp = nash_conv.NashConv(mfg_game, uniform_policy)
    print(nash_conv_fp.nash_conv())

    print('compute distribution')
    mfg_dist = distribution.DistributionPolicy(mfg_game, uniform_policy)
    br_value = best_response_value.BestResponse(mfg_game, mfg_dist)
    py_value = policy_value.PolicyValue(mfg_game, mfg_dist, uniform_policy)
    print(br_value(mfg_game.new_initial_state()))
    print(py_value(mfg_game.new_initial_state()))
    greedy_pi = greedy_policy.GreedyPolicy(mfg_game, None, br_value)
    greedy_pi = greedy_pi.to_tabular()
    pybr_value = policy_value.PolicyValue(mfg_game, mfg_dist, greedy_pi)
    print(pybr_value(mfg_game.new_initial_state()))
    print('merge')
    merged_pi = fictitious_play.MergedPolicy(
        mfg_game, list(range(mfg_game.num_players())),
        [uniform_policy, greedy_pi],
        [mfg_dist,
         distribution.DistributionPolicy(mfg_game, greedy_pi)], [0.5, 0.5])

    merged_pi_value = policy_value.PolicyValue(mfg_game, mfg_dist, merged_pi)
    print(br_value(mfg_game.new_initial_state()))
    print(py_value(mfg_game.new_initial_state()))
    print(merged_pi_value(mfg_game.new_initial_state()))
    print((br_value(mfg_game.new_initial_state()) +
           py_value(mfg_game.new_initial_state())) / 2)
    print('fp')
    fp = fictitious_play.FictitiousPlay(mfg_game)
    for j in range(100):
        print(j)
        fp.iteration()
        fp_policy = fp.get_policy()
        nash_conv_fp = nash_conv.NashConv(mfg_game, fp_policy)
        print(nash_conv_fp.nash_conv())