示例#1
0
    def maximize(
            self,
            runhistory: HistoryContainer,
            num_points: int,  # todo useless
            **kwargs) -> Iterable[Configuration]:
        """Maximize acquisition function using ``_maximize``.

        Parameters
        ----------
        runhistory: ~openbox.utils.history_container.HistoryContainer
            runhistory object
        num_points: int
            number of points to be sampled
        **kwargs
            passed to acquisition function

        Returns
        -------
        Iterable[Configuration]
            to be concrete: ~openbox.ei_optimization.ChallengerList
        """
        def inverse_acquisition(x):
            # shape of x = (d,)
            return -self.acquisition_function(x,
                                              convert=False)[0]  # shape=(1,)

        d = len(self.config_space.get_hyperparameters())
        bound = (0.0, 1.0)  # todo only on continuous dims (int, float) now
        bounds = [bound] * d
        acq_configs = []

        # MC
        x_tries = self.rng.uniform(bound[0], bound[1], size=(self.num_mc, d))
        acq_tries = self.acquisition_function(x_tries, convert=False)
        for i in range(x_tries.shape[0]):
            # convert array to Configuration
            config = Configuration(self.config_space, vector=x_tries[i])
            config.origin = 'Random Search'
            acq_configs.append((acq_tries[i], config))

        # L-BFGS-B
        x_seed = self.rng.uniform(low=bound[0],
                                  high=bound[1],
                                  size=(self.num_opt, d))
        for i in range(x_seed.shape[0]):
            x0 = x_seed[i].reshape(1, -1)
            result = self.minimizer(inverse_acquisition,
                                    x0=x0,
                                    method='L-BFGS-B',
                                    bounds=bounds)
            if not result.success:
                continue
            # convert array to Configuration
            config = Configuration(self.config_space, vector=result.x)
            config.origin = 'Scipy'
            acq_val = self.acquisition_function(result.x, convert=False)  # [0]
            acq_configs.append((acq_val, config))

        # shuffle for random tie-break
        self.rng.shuffle(acq_configs)

        # sort according to acq value
        acq_configs.sort(reverse=True, key=lambda x: x[0])

        configs = [_[1] for _ in acq_configs]

        challengers = ChallengerList(configs, self.config_space,
                                     self.random_chooser)
        self.random_chooser.next_smbo_iteration()
        return challengers
示例#2
0
    def maximize(
            self,
            runhistory: HistoryContainer,
            num_points: int,  # todo useless
            **kwargs) -> List[Tuple[float, Configuration]]:

        # print('start optimize')   # todo remove
        # import time
        # t0 = time.time()
        acq_configs = []

        # random points
        random_points = self.rng.uniform(self.bound[0],
                                         self.bound[1],
                                         size=(self.num_random, self.dim))
        acq_random = self.acquisition_function(random_points, convert=False)
        for i in range(random_points.shape[0]):
            # convert array to Configuration
            config = Configuration(self.config_space, vector=random_points[i])
            config.origin = 'Random Search'
            acq_configs.append((acq_random[i], config))

        # scipy points
        initial_points = self.gen_initial_points(
            num_restarts=self.num_restarts, raw_samples=self.raw_samples)

        for start_idx in range(0, self.num_restarts, self.batch_limit):
            end_idx = min(start_idx + self.batch_limit, self.num_restarts)
            # optimize using random restart optimization
            scipy_points = self.gen_batch_scipy_points(
                initial_points[start_idx:end_idx])
            if scipy_points is None:
                continue
            acq_scipy = self.acquisition_function(scipy_points, convert=False)
            for i in range(scipy_points.shape[0]):
                # convert array to Configuration
                config = Configuration(self.config_space,
                                       vector=scipy_points[i])
                config.origin = 'Batch Scipy'
                acq_configs.append((acq_scipy[i], config))

        # shuffle for random tie-break
        self.rng.shuffle(acq_configs)

        # sort according to acq value
        acq_configs.sort(reverse=True, key=lambda x: x[0])

        configs = [_[1] for _ in acq_configs]

        challengers = ChallengerList(configs, self.config_space,
                                     self.random_chooser)
        self.random_chooser.next_smbo_iteration()

        # t1 = time.time()  # todo remove
        # print('==time total=%.2f' % (t1-t0,))
        # for x1 in np.linspace(0, 1, 20):
        #     optimal_point = np.array([x1.item()] + [0.5] * (self.dim-1))
        #     print('optimal_point acq=', self.acquisition_function(optimal_point, convert=False))
        # print('best point acq=', acq_configs[0])
        # time.sleep(2)
        return challengers