示例#1
0
def get_scores(image,
               east='frozen_east_text_detection.pb',
               min_confidence=0.5,
               width=320,
               height=320):

    if TESTING:
        cv.imshow('SCORES INPUT', image)

    (imageHeight, imageWidth) = image.shape[:2]

    layerNames = ["feature_fusion/Conv_7/Sigmoid", "feature_fusion/concat_3"]

    # load the pre-trained EAST text detector
    log("[INFO] loading EAST text detector...")

    log('east:', east)
    net = cv.dnn.readNetFromTensorflow(east)

    blob = cv.dnn.blobFromImage(image,
                                1.0, (imageWidth, imageHeight),
                                (123.68, 116.78, 103.94),
                                swapRB=True,
                                crop=False)

    start = time.time()
    net.setInput(blob)

    (scores, geometry) = net.forward(layerNames)

    end = time.time()

    log("[INFO] text detection took {:.6f} seconds".format(end - start))

    confidenceThreshold = min_confidence

    return decode(scores, geometry, confidenceThreshold)
示例#2
0
def text_detection(image, east, min_confidence, width, height):
    # load the input image and grab the image dimensions
    image = cv2.imread(image)
    orig = image.copy()
    (origHeight, origWidth) = image.shape[:2]

    # set the new width and height and then determine the ratio in change
    # for both the width and height
    (newW, newH) = (width, height)
    ratioWidth = origWidth / float(newW)
    ratioHeight = origHeight / float(newH)

    # resize the image and grab the new image dimensions
    image = cv2.resize(image, (newW, newH))
    (imageHeight, imageWidth) = image.shape[:2]

    # define the two output layer names for the EAST detector model that
    # we are interested -- the first is the output probabilities and the
    # second can be used to derive the bounding box coordinates of text
    layerNames = ["feature_fusion/Conv_7/Sigmoid", "feature_fusion/concat_3"]

    # load the pre-trained EAST text detector
    print("[INFO] loading EAST text detector...")
    net = cv2.dnn.readNet(east)

    # construct a blob from the image and then perform a forward pass of
    # the model to obtain the two output layer sets
    blob = cv2.dnn.blobFromImage(image,
                                 1.0, (imageWidth, imageHeight),
                                 (123.68, 116.78, 103.94),
                                 swapRB=True,
                                 crop=False)

    start = time.time()
    net.setInput(blob)
    (scores, geometry) = net.forward(layerNames)
    end = time.time()

    # show timing information on text prediction
    print("[INFO] text detection took {:.6f} seconds".format(end - start))

    # NMS on the the unrotated rects
    confidenceThreshold = min_confidence
    nmsThreshold = 0.4

    # decode the blob info
    (rects, confidences, baggage) = decode(scores, geometry,
                                           confidenceThreshold)

    offsets = []
    thetas = []
    for b in baggage:
        offsets.append(b['offset'])
        thetas.append(b['angle'])

    ##########################################################

    functions = [nms.felzenszwalb.nms, nms.fast.nms, nms.malisiewicz.nms]

    print("[INFO] Running nms.boxes . . .")

    for i, function in enumerate(functions):

        start = time.time()
        indicies = nms.boxes(rects,
                             confidences,
                             nms_function=function,
                             confidence_threshold=confidenceThreshold,
                             nsm_threshold=nmsThreshold)
        end = time.time()

        indicies = np.array(indicies).reshape(-1)

        drawrects = np.array(rects)[indicies]

        name = function.__module__.split('.')[-1].title()
        print("[INFO] {} NMS took {:.6f} seconds and found {} boxes".format(
            name, end - start, len(drawrects)))

        drawOn = orig.copy()
        drawBoxes(drawOn, drawrects, ratioWidth, ratioHeight, (0, 255, 0), 2)

        title = "nms.boxes {}".format(name)
        cv2.imshow(title, drawOn)
        cv2.moveWindow(title, 150 + i * 300, 150)

    cv2.waitKey(0)

    # convert rects to polys
    polygons = utils.rects2polys(rects, thetas, offsets, ratioWidth,
                                 ratioHeight)

    print("[INFO] Running nms.polygons . . .")

    for i, function in enumerate(functions):

        start = time.time()
        indicies = nms.polygons(polygons,
                                confidences,
                                nms_function=function,
                                confidence_threshold=confidenceThreshold,
                                nsm_threshold=nmsThreshold)
        end = time.time()

        indicies = np.array(indicies).reshape(-1)

        drawpolys = np.array(polygons)[indicies]

        name = function.__module__.split('.')[-1].title()

        print("[INFO] {} NMS took {:.6f} seconds and found {} boxes".format(
            name, end - start, len(drawpolys)))

        drawOn = orig.copy()
        drawPolygons(drawOn, drawpolys, ratioWidth, ratioHeight, (0, 255, 0),
                     2)

        title = "nms.polygons {}".format(name)
        cv2.imshow(title, drawOn)
        cv2.moveWindow(title, 150 + i * 300, 150)

    cv2.waitKey(0)
示例#3
0
def text_detect(image, min_confidence, width, height):
    # load the input image and grab the image dimensions
    image = cv2.imread(image)
    orig = image.copy()
    (origHeight, origWidth) = image.shape[:2]

    # set the new width and height and then determine the ratio in change
    # for both the width and height
    (newW, newH) = (width, height)
    ratioWidth = origWidth / float(newW)
    ratioHeight = origHeight / float(newH)

    # resize the image and grab the new image dimensions
    image = cv2.resize(image, (newW, newH))
    (imageHeight, imageWidth) = image.shape[:2]

    # define the two output layer names for the EAST detector model that
    # we are interested -- the first is the output probabilities and the
    # second can be used to derive the bounding box coordinates of text
    layerNames = ["feature_fusion/Conv_7/Sigmoid", "feature_fusion/concat_3"]

    # load the pre-trained EAST text detector
    #     print("[INFO] loading EAST text detector...")
    net = text_model

    # construct a blob from the image and then perform a forward pass of
    # the model to obtain the two output layer sets
    blob = cv2.dnn.blobFromImage(image,
                                 1.0, (imageWidth, imageHeight),
                                 (123.68, 116.78, 103.94),
                                 swapRB=True,
                                 crop=False)

    start = time.time()
    net.setInput(blob)
    (scores, geometry) = net.forward(layerNames)
    end = time.time()

    # NMS on the the unrotated rects
    confidenceThreshold = min_confidence
    nmsThreshold = 0.4

    # decode the blob info
    (rects, confidences, baggage) = decode(scores, geometry,
                                           confidenceThreshold)

    offsets = []
    thetas = []
    for b in baggage:
        offsets.append(b['offset'])
        thetas.append(b['angle'])

    ##########################################################

    functions = [nms.felzenszwalb.nms, nms.fast.nms, nms.malisiewicz.nms]

    drawpolys_count, drawrects_count = 0, 0

    for i, function in enumerate(functions):

        indicies = nms.boxes(rects,
                             confidences,
                             nms_function=function,
                             confidence_threshold=confidenceThreshold,
                             nsm_threshold=nmsThreshold)

        indicies = np.array(indicies).reshape(-1)

        if len(indicies) != 0:
            drawrects = np.array(rects)[indicies]
            drawpolys_count = len(drawrects)

    # convert rects to polys
    polygons = utils.rects2polys(rects, thetas, offsets, ratioWidth,
                                 ratioHeight)

    for i, function in enumerate(functions):

        start = time.time()
        indicies = nms.polygons(polygons,
                                confidences,
                                nms_function=function,
                                confidence_threshold=confidenceThreshold,
                                nsm_threshold=nmsThreshold)
        end = time.time()

        indicies = np.array(indicies).reshape(-1)

        if len(indicies) != 0:
            drawpolys = np.array(polygons)[indicies]
            drawrects_count = len(drawpolys)

    return [drawpolys_count, drawrects_count]