def test_dataframe_partitioning_2(): # dataframe partition with multi-index grouping with sn.Analysis() as analysis: data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) grouper = sn.clamp(data[['sex', 'educ']], categories=[['0', '1'], [str(i) for i in range(14)]], null_value='-1') partitioned = sn.partition(data, by=grouper) sn.union( { key: sn.dp_count(partitioned[key], privacy_usage={"epsilon": 0.5}) for key in partitioned.partition_keys }, flatten=False) print( sn.union({ key: sn.dp_mean( sn.to_float(partitioned[key]['income']), implementation="plug-in", # data_rows=100, data_lower=0., data_upper=200_000., privacy_usage={"epsilon": 0.5}) for key in partitioned.partition_keys }))
def test_multilayer_partition_1(): # multilayer partition with mechanisms applied inside partitions with sn.Analysis() as analysis: data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) is_male = sn.to_bool(data['sex'], true_label="1") educ_inc = sn.impute( sn.clamp(sn.to_float(data[['educ', 'income']]), lower=[0., 0.], upper=[15., 200_000.])) partitioned = sn.partition(educ_inc, by=is_male) def analyze(data): educ = sn.clamp(sn.to_int(sn.index(data, indices=0), lower=0, upper=15), categories=list(range(15)), null_value=-1) income = sn.index(data, indices=1) repartitioned = sn.partition(income, by=educ) inner_count = {} inner_means = {} for key in [5, 8, 12]: educ_level_part = repartitioned[key] inner_count[key] = sn.dp_count(educ_level_part, privacy_usage={"epsilon": 0.4}) inner_means[key] = sn.dp_mean(educ_level_part, privacy_usage={"epsilon": 0.6}, data_rows=sn.row_max( 1, inner_count[key])) return sn.union(inner_means, flatten=False), sn.union(inner_count, flatten=False) means = {} counts = {} for key in partitioned.partition_keys: part_means, part_counts = analyze(partitioned[key]) means[key] = part_means counts[key] = part_counts means = sn.union(means, flatten=False) counts = sn.union(counts, flatten=False) # analysis.plot() print("releasing") print(len(analysis.components.items())) analysis.release() print(analysis.privacy_usage) print("Counts:") print(counts.value) print("Means:") print(means.value)
def test_groupby_4(): # now union private data, and apply mechanism after with sn.Analysis() as analysis: data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) is_male = sn.to_bool(data['sex'], true_label="1") educ_inc = sn.impute( sn.clamp(sn.to_float(data[['educ', 'income']]), lower=[0., 0.], upper=[15., 200_000.])) partitioned = sn.partition(educ_inc, by=is_male) means = {} for cat in is_male.categories: part = partitioned[cat] part = sn.resize(part, number_rows=500) part = sn.mean(part) means[cat] = part union = sn.union(means) noised = sn.laplace_mechanism(union, privacy_usage={"epsilon": 1.0}) # analysis.plot() analysis.release() print(analysis.privacy_usage) print(noised.value)
def test_groupby_3(): # now union the released output with sn.Analysis() as analysis: data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) is_male = sn.to_bool(data['sex'], true_label="1") educ_inc = sn.impute( sn.clamp(sn.to_float(data[['educ', 'income']]), lower=[0., 0.], upper=[15., 200_000.])) partitioned = sn.partition(educ_inc, by=is_male) means = {} for cat in is_male.categories: part = partitioned[cat] part = sn.resize(part, number_rows=500) part = sn.dp_mean(part, privacy_usage={"epsilon": 1.0}) # print("mean: ", part.properties) means[cat] = part union = sn.union(means) # analysis.plot() analysis.release() print(analysis.privacy_usage) print(union.value)
def test_groupby_c_stab(): # use the same partition multiple times in union with sn.Analysis() as analysis: data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) is_male = sn.to_bool(data['sex'], true_label="1") educ_inc = sn.impute( sn.clamp(sn.to_float(data[['educ', 'income']]), lower=[0., 0.], upper=[15., 200_000.])) partitioned = sn.partition(educ_inc, by=is_male) def analyze(data): return sn.mean(sn.resize(data, number_rows=500)) means = { True: analyze(partitioned[True]), False: analyze(partitioned[False]), "duplicate_that_inflates_c_stab": analyze(partitioned[True]), } union = sn.union(means) noised = sn.laplace_mechanism(union, privacy_usage={"epsilon": 1.0}) # analysis.plot() analysis.release() print(analysis.privacy_usage) print(noised.value)
def test_fail_groupby(): with sn.Analysis() as analysis: data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) is_male = sn.to_bool(data['sex'], true_label="1") educ_inc = sn.impute( sn.clamp(sn.to_float(data[['educ', 'income']]), lower=[0., 0.], upper=[15., 200_000.])) partitioned = sn.partition(educ_inc, by=is_male) bounds = { "data_lower": [0., 0.], "data_upper": [15., 200_000.], "data_rows": 500 } union = sn.union({ True: sn.mean(partitioned[True], privacy_usage={"epsilon": 0.1}, **bounds), False: sn.mean(partitioned[False], **bounds), }) sn.laplace_mechanism(union, privacy_usage={"epsilon": 1.0}) print(analysis.privacy_usage)
def analyze(data): educ = sn.clamp(sn.to_int(sn.index(data, indices=0), lower=0, upper=15), categories=list(range(15)), null_value=-1) income = sn.index(data, indices=1) repartitioned = sn.partition(income, by=educ) inner_count = {} inner_means = {} for key in [5, 8, 12]: educ_level_part = repartitioned[key] inner_count[key] = sn.dp_count(educ_level_part, privacy_usage={"epsilon": 0.4}) inner_means[key] = sn.mean( sn.resize(educ_level_part, number_rows=sn.row_min(1, inner_count[key] * 4 // 5))) return sn.union(inner_means), sn.union(inner_count)