def main(ini_path=None, overwrite_flag=False, delay_time=0, gee_key_file=None, ready_task_max=-1, reverse_flag=False, tiles=None, update_flag=False, log_tasks=True, recent_days=0, start_dt=None, end_dt=None): """Compute gridded Tcorr images by date Parameters ---------- ini_path : str Input file path. overwrite_flag : bool, optional If True, overwrite existing files if the export dates are the same and generate new images (but with different export dates) even if the tile lists are the same. The default is False. delay_time : float, optional Delay time in seconds between starting export tasks (or checking the number of queued tasks, see "max_ready" parameter). The default is 0. gee_key_file : str, None, optional Earth Engine service account JSON key file (the default is None). ready_task_max: int, optional Maximum number of queued "READY" tasks. reverse_flag : bool, optional If True, process WRS2 tiles in reverse order (the default is False). tiles : str, None, optional List of MGRS tiles to process (the default is None). update_flag : bool, optional If True, only overwrite scenes with an older model version. recent_days : int, optional Limit start/end date range to this many days before the current date (the default is 0 which is equivalent to not setting the parameter and will use the INI start/end date directly). start_dt : datetime, optional Override the start date in the INI file (the default is None which will use the INI start date). end_dt : datetime, optional Override the (inclusive) end date in the INI file (the default is None which will use the INI end date). """ logging.info('\nCompute gridded Tcorr images by date') # CGM - Which format should we use for the WRS2 tile? wrs2_tile_fmt = 'p{:03d}r{:03d}' # wrs2_tile_fmt = '{:03d}{:03d}' wrs2_tile_re = re.compile('p?(\d{1,3})r?(\d{1,3})') # List of path/rows to skip wrs2_skip_list = [ 'p049r026', # Vancouver Island, Canada # 'p047r031', # North California coast 'p042r037', # San Nicholas Island, California # 'p041r037', # South California coast 'p040r038', 'p039r038', 'p038r038', # Mexico (by California) 'p037r039', 'p036r039', 'p035r039', # Mexico (by Arizona) 'p034r039', 'p033r039', # Mexico (by New Mexico) 'p032r040', # Mexico (West Texas) 'p029r041', 'p028r042', 'p027r043', 'p026r043', # Mexico (South Texas) 'p019r040', 'p018r040', # West Florida coast 'p016r043', 'p015r043', # South Florida coast 'p014r041', 'p014r042', 'p014r043', # East Florida coast 'p013r035', 'p013r036', # North Carolina Outer Banks 'p013r026', 'p012r026', # Canada (by Maine) 'p011r032', # Rhode Island coast ] wrs2_path_skip_list = [9, 49] wrs2_row_skip_list = [25, 24, 43] mgrs_skip_list = [] export_id_fmt = 'tcorr_gridded_{product}_{scene_id}' asset_id_fmt = '{coll_id}/{scene_id}' # TODO: Move to INI or function input parameter clip_ocean_flag = True # Read config file ini = configparser.ConfigParser(interpolation=None) ini.read_file(open(ini_path, 'r')) # ini = utils.read_ini(ini_path) model_name = 'SSEBOP' try: study_area_coll_id = str(ini['INPUTS']['study_area_coll']) except KeyError: raise ValueError('"study_area_coll" parameter was not set in INI') except Exception as e: raise e try: start_date = str(ini['INPUTS']['start_date']) except KeyError: raise ValueError('"start_date" parameter was not set in INI') except Exception as e: raise e try: end_date = str(ini['INPUTS']['end_date']) except KeyError: raise ValueError('"end_date" parameter was not set in INI') except Exception as e: raise e try: collections = str(ini['INPUTS']['collections']) collections = sorted([x.strip() for x in collections.split(',')]) except KeyError: raise ValueError('"collections" parameter was not set in INI') except Exception as e: raise e try: mgrs_ftr_coll_id = str(ini['EXPORT']['mgrs_ftr_coll']) except KeyError: raise ValueError('"mgrs_ftr_coll" parameter was not set in INI') except Exception as e: raise e # Optional parameters try: study_area_property = str(ini['INPUTS']['study_area_property']) except KeyError: study_area_property = None logging.debug( ' study_area_property: not set in INI, defaulting to None') except Exception as e: raise e try: study_area_features = str(ini['INPUTS']['study_area_features']) study_area_features = sorted( [x.strip() for x in study_area_features.split(',')]) except KeyError: study_area_features = [] logging.debug( ' study_area_features: not set in INI, defaulting to []') except Exception as e: raise e try: wrs2_tiles = str(ini['INPUTS']['wrs2_tiles'])\ .replace('"', '').replace("'", '') wrs2_tiles = sorted([x.strip() for x in wrs2_tiles.split(',')]) except KeyError: wrs2_tiles = [] logging.debug(' wrs2_tiles: not set in INI, defaulting to []') except Exception as e: raise e try: mgrs_tiles = str(ini['EXPORT']['mgrs_tiles']) mgrs_tiles = sorted([x.strip() for x in mgrs_tiles.split(',')]) # CGM - Remove empty strings caused by trailing or extra commas mgrs_tiles = [x.upper() for x in mgrs_tiles if x] logging.debug(f' mgrs_tiles: {mgrs_tiles}') except KeyError: mgrs_tiles = [] logging.debug(' mgrs_tiles: not set in INI, defaulting to []') except Exception as e: raise e try: utm_zones = str(ini['EXPORT']['utm_zones']) utm_zones = sorted([int(x.strip()) for x in utm_zones.split(',')]) logging.debug(f' utm_zones: {utm_zones}') except KeyError: utm_zones = [] logging.debug(' utm_zones: not set in INI, defaulting to []') except Exception as e: raise e # TODO: Add try/except blocks and default values? cloud_cover = float(ini['INPUTS']['cloud_cover']) # Model specific parameters # Set the property name to lower case and try to cast values to numbers model_args = { k.lower(): float(v) if utils.is_number(v) else v for k, v in dict(ini[model_name]).items() } filter_args = {} tmax_source = ini[model_name]['tmax_source'] tcorr_source = ini[model_name]['tcorr_source'] tcorr_scene_coll_id = '{}'.format(ini['EXPORT']['export_coll']) # tcorr_scene_coll_id = '{}/{}_scene'.format( # ini['EXPORT']['export_coll'], tmax_source.lower()) if tcorr_source.upper() not in ['GRIDDED_COLD', 'GRIDDED']: raise ValueError('unsupported tcorr_source for these tools') # For now only support reading specific Tmax sources if (tmax_source.upper() not in ['DAYMET_MEDIAN_V2'] and not re.match( 'projects/.+/tmax/.+_(mean|median)_\d{4}_\d{4}', tmax_source)): raise ValueError(f'unsupported tmax_source: {tmax_source}') # if (tmax_source.upper() == 'CIMIS' and # ini['INPUTS']['end_date'] < '2003-10-01'): # raise ValueError('CIMIS is not currently available before 2003-10-01') # elif (tmax_source.upper() == 'DAYMET' and # ini['INPUTS']['end_date'] > '2018-12-31'): # logging.warning('\nDAYMET is not currently available past 2018-12-31, ' # 'using median Tmax values\n') # If the user set the tiles argument, use these instead of the INI values if tiles: logging.info('\nOverriding INI mgrs_tiles and utm_zones parameters') logging.info(f' user tiles: {tiles}') mgrs_tiles = sorted([y.strip() for x in tiles for y in x.split(',')]) mgrs_tiles = [x.upper() for x in mgrs_tiles if x] logging.info(f' mgrs_tiles: {", ".join(mgrs_tiles)}') utm_zones = sorted(list(set([int(x[:2]) for x in mgrs_tiles]))) logging.info(f' utm_zones: {", ".join(map(str, utm_zones))}') today_dt = datetime.datetime.now() today_dt = today_dt.replace(hour=0, minute=0, second=0, microsecond=0) if recent_days: logging.info('\nOverriding INI "start_date" and "end_date" parameters') logging.info(f' Recent days: {recent_days}') end_dt = today_dt - datetime.timedelta(days=1) start_dt = today_dt - datetime.timedelta(days=recent_days) start_date = start_dt.strftime('%Y-%m-%d') end_date = end_dt.strftime('%Y-%m-%d') elif start_dt and end_dt: # Attempt to use the function start/end dates logging.info('\nOverriding INI "start_date" and "end_date" parameters') logging.info(' Custom date range') start_date = start_dt.strftime('%Y-%m-%d') end_date = end_dt.strftime('%Y-%m-%d') else: # Parse the INI start/end dates logging.info('\nINI date range') try: start_dt = datetime.datetime.strptime(start_date, '%Y-%m-%d') end_dt = datetime.datetime.strptime(end_date, '%Y-%m-%d') except Exception as e: raise e logging.info(f' Start: {start_date}') logging.info(f' End: {end_date}') # TODO: Add a few more checks on the dates if end_dt < start_dt: raise ValueError('end date can not be before start date') # logging.debug('\nInterpolation date range') # iter_start_dt = start_dt # iter_end_dt = end_dt + datetime.timedelta(days=1) # # iter_start_dt = start_dt - datetime.timedelta(days=interp_days) # # iter_end_dt = end_dt + datetime.timedelta(days=interp_days+1) # logging.debug(' Start: {}'.format(iter_start_dt.strftime('%Y-%m-%d'))) # logging.debug(' End: {}'.format(iter_end_dt.strftime('%Y-%m-%d'))) logging.info('\nInitializing Earth Engine') if gee_key_file: logging.info(f' Using service account key file: {gee_key_file}') # The "EE_ACCOUNT" parameter is not used if the key file is valid ee.Initialize(ee.ServiceAccountCredentials('x', key_file=gee_key_file)) else: ee.Initialize() logging.debug('\nTmax properties') logging.debug(f' Source: {tmax_source}') # # DEADBEEF - Not needed with gridded Tcorr # # Get a Tmax image to set the Tcorr values to # if 'MEDIAN' in tmax_name.upper(): # tmax_coll_id = 'projects/earthengine-legacy/assets/' \ # 'projects/usgs-ssebop/tmax/{}'.format(tmax_name.lower()) # tmax_coll = ee.ImageCollection(tmax_coll_id) # tmax_mask = ee.Image(tmax_coll.first()).select([0]).multiply(0) # # else: # # raise ValueError(f'unsupported tmax_source: {tmax_name}') # logging.debug(f' Collection: {tmax_coll_id}') if not ee.data.getInfo(tcorr_scene_coll_id.rsplit('/', 1)[0]): logging.info('\nExport folder does not exist and will be built' '\n {}'.format(tcorr_scene_coll_id.rsplit('/', 1)[0])) input('Press ENTER to continue') ee.data.createAsset({'type': 'FOLDER'}, tcorr_scene_coll_id.rsplit('/', 1)[0]) if not ee.data.getInfo(tcorr_scene_coll_id): logging.info('\nExport collection does not exist and will be built' '\n {}'.format(tcorr_scene_coll_id)) input('Press ENTER to continue') ee.data.createAsset({'type': 'IMAGE_COLLECTION'}, tcorr_scene_coll_id) # DEADBEEF - The asset list will be retrieved before each date is processed # # Get current asset list # logging.debug('\nGetting GEE asset list') # asset_list = utils.get_ee_assets(tcorr_scene_coll_id) # # if logging.getLogger().getEffectiveLevel() == logging.DEBUG: # # pprint.pprint(asset_list[:10]) # Get current running tasks tasks = utils.get_ee_tasks() ready_task_count = sum(1 for t in tasks.values() if t['state'] == 'READY') # ready_task_count = delay_task(ready_task_count, delay_time, max_ready) if logging.getLogger().getEffectiveLevel() == logging.DEBUG: utils.print_ee_task(tasks) input('ENTER') # Get list of MGRS tiles that intersect the study area logging.debug('\nMGRS Tiles/Zones') export_list = mgrs_export_tiles( study_area_coll_id=study_area_coll_id, mgrs_coll_id=mgrs_ftr_coll_id, study_area_property=study_area_property, study_area_features=study_area_features, mgrs_tiles=mgrs_tiles, mgrs_skip_list=mgrs_skip_list, utm_zones=utm_zones, wrs2_tiles=wrs2_tiles, ) if not export_list: logging.error('\nEmpty export list, exiting') return False # Build the complete WRS2 list for filtering the image list wrs2_tile_list = sorted( list( set(wrs2 for tile_info in export_list for wrs2 in tile_info['wrs2_tiles']))) if wrs2_skip_list: wrs2_tile_list = [ wrs2 for wrs2 in wrs2_tile_list if wrs2 not in wrs2_skip_list ] if wrs2_path_skip_list: wrs2_tile_list = [ wrs2 for wrs2 in wrs2_tile_list if int(wrs2[1:4]) not in wrs2_path_skip_list ] if wrs2_row_skip_list: wrs2_tile_list = [ wrs2 for wrs2 in wrs2_tile_list if int(wrs2[5:8]) not in wrs2_row_skip_list ] # CGM - This is kind of backwards, but rebuild the MGRS geometry in order # to filter the model collection object mgrs_tile_list = sorted( list(set(tile_info['index'] for tile_info in export_list))) mgrs_geom = ee.FeatureCollection(mgrs_ftr_coll_id)\ .filter(ee.Filter.inList('mgrs', mgrs_tile_list))\ .geometry() for export_dt in sorted(utils.date_range(start_dt, end_dt), reverse=reverse_flag): export_date = export_dt.strftime('%Y-%m-%d') next_date = (export_dt + datetime.timedelta(days=1)).strftime('%Y-%m-%d') logging.info(f'Date: {export_date}') model_obj = ssebop.Collection( collections=collections, start_date=export_date, end_date=next_date, cloud_cover_max=cloud_cover, geometry=mgrs_geom, model_args=model_args, # filter_args=filter_args, ) landsat_coll = model_obj.overpass(variables=['ndvi']) # pprint.pprint(landsat_coll.aggregate_array('system:id').getInfo()) # input('ENTER') try: image_id_list = landsat_coll.aggregate_array('system:id').getInfo() except Exception as e: logging.warning(' Error getting image ID list, skipping date') logging.debug(f' {e}') continue # Get list of existing images for the target date logging.debug(' Getting GEE asset list') asset_coll = ee.ImageCollection(tcorr_scene_coll_id) \ .filterDate(export_date, next_date) \ .filter(ee.Filter.inList('wrs2_tile', wrs2_tile_list)) asset_props = { f'{tcorr_scene_coll_id}/{x["properties"]["system:index"]}': x['properties'] for x in utils.get_info(asset_coll)['features'] } # asset_props = {x['id']: x['properties'] for x in assets_info['features']} # Sort image ID list by path/row image_id_list = sorted(image_id_list, key=lambda k: k.split('/')[-1].split('_')[-2], reverse=True) for image_id in image_id_list: coll_id, scene_id = image_id.rsplit('/', 1) wrs2_path = int(scene_id[5:8]) wrs2_row = int(scene_id[8:11]) wrs2_tile = 'p{:03d}r{:03d}'.format(wrs2_path, wrs2_row) if wrs2_tile not in wrs2_tile_list: logging.debug(f'{scene_id} - not in wrs2 tile list, skipping') continue else: logging.info(f'{scene_id}') export_id = export_id_fmt.format( product=tmax_source.split('/')[-1].lower(), scene_id=scene_id) logging.debug(f' Export ID: {export_id}') asset_id = asset_id_fmt.format(coll_id=tcorr_scene_coll_id, scene_id=scene_id) logging.debug(f' Collection: {os.path.dirname(asset_id)}') logging.debug(f' Image ID: {os.path.basename(asset_id)}') if update_flag: def version_number(version_str): return list(map(int, version_str.split('.'))) if export_id in tasks.keys(): logging.info(' Task already submitted, skipping') continue # In update mode only overwrite if the version is old if asset_props and asset_id in asset_props.keys(): model_ver = version_number(ssebop.__version__) asset_ver = version_number( asset_props[asset_id]['model_version']) if asset_ver < model_ver: logging.info(' Existing asset model version is old, ' 'removing') logging.debug(f' asset: {asset_ver}\n' f' model: {model_ver}') try: ee.data.deleteAsset(asset_id) except: logging.info(' Error removing asset, skipping') continue elif (('T1_RT_TOA' in asset_props[asset_id]['coll_id']) and ('T1_RT_TOA' not in image_id)): logging.info(' Existing asset is from realtime ' 'Landsat collection, removing') try: ee.data.deleteAsset(asset_id) except: logging.info(' Error removing asset, skipping') continue else: logging.debug(' Asset is up to date, skipping') continue elif overwrite_flag: if export_id in tasks.keys(): logging.info(' Task already submitted, cancelling') ee.data.cancelTask(tasks[export_id]['id']) # This is intentionally not an "elif" so that a task can be # cancelled and an existing image/file/asset can be removed if asset_props and asset_id in asset_props.keys(): logging.info(' Asset already exists, removing') ee.data.deleteAsset(asset_id) else: if export_id in tasks.keys(): logging.info(' Task already submitted, skipping') continue elif asset_props and asset_id in asset_props.keys(): logging.info(' Asset already exists, skipping') continue # Get the input image grid and spatial reference image_info = ee.Image(image_id).select([3]).getInfo() image_geo = image_info['bands'][0]['crs_transform'] image_crs = image_info['bands'][0]['crs'] image_shape = image_info['bands'][0]['dimensions'] # Transform format: [30, 0, 591285, 0, -30, 4256115] image_extent = [ image_geo[2], image_geo[5] + image_shape[1] * image_geo[4], image_geo[2] + image_shape[0] * image_geo[0], image_geo[5] ] logging.debug(f' Image CRS: {image_crs}') logging.debug(f' Image Geo: {image_geo}') logging.debug(f' Image Extent: {image_extent}') logging.debug(f' Image Shape: {image_shape}') # Adjust the image extent to the coarse resolution grid # EXPORT_GEO = [5000, 0, 15, 0, -5000, 15] export_cs = EXPORT_GEO[0] export_extent = [ round( math.floor((image_extent[0] - EXPORT_GEO[2]) / export_cs) * export_cs + EXPORT_GEO[2], 8), round( math.floor((image_extent[1] - EXPORT_GEO[5]) / export_cs) * export_cs + EXPORT_GEO[5], 8), round( math.ceil((image_extent[2] - EXPORT_GEO[2]) / export_cs) * export_cs + EXPORT_GEO[2], 8), round( math.ceil((image_extent[3] - EXPORT_GEO[5]) / export_cs) * export_cs + EXPORT_GEO[5], 8), ] export_geo = [ export_cs, 0, export_extent[0], 0, -export_cs, export_extent[3] ] export_shape = [ int(abs(export_extent[2] - export_extent[0]) / EXPORT_GEO[0]), int(abs(export_extent[3] - export_extent[1]) / EXPORT_GEO[0]) ] logging.debug(f' Export CRS: {image_crs}') logging.debug(f' Export Geo: {export_geo}') logging.debug(f' Export Extent: {export_extent}') logging.debug(f' Export Shape: {export_shape}') # CGM - Why are we not using the from_image_id() method? # t_obj = ssebop.Image.from_image_id(ee.Image(image_id), **model_args) if coll_id.endswith('_L2'): t_obj = ssebop.Image.from_landsat_c2_sr( sr_image=ee.Image(image_id), cloudmask_args={ 'cirrus_flag': True, 'dilate_flag': True, 'shadow_flag': True, 'snow_flag': True }, **model_args) elif coll_id.endswith('_SR'): t_obj = ssebop.Image.from_landsat_c1_sr( ee.Image(image_id), **model_args) elif coll_id.endswith('_TOA'): t_obj = ssebop.Image.from_landsat_c1_toa( ee.Image(image_id), **model_args) else: raise ValueError('Could not determine Landsat type') # CGM - Intentionally not calling the tcorr method directly since # there may be compositing with climos or the scene average if tcorr_source == 'GRIDDED': tcorr_img = t_obj.tcorr_gridded elif tcorr_source == 'GRIDDED_COLD': tcorr_img = t_obj.tcorr_gridded_cold # tcorr_img = t_obj.tcorr # Clip to the Landsat image footprint tcorr_img = ee.Image(tcorr_img).clip(ee.Image(image_id).geometry()) # Clear the transparency mask (from clipping) tcorr_img = tcorr_img.updateMask(tcorr_img.unmask(0)) if clip_ocean_flag: tcorr_img = tcorr_img\ .updateMask(ee.Image('projects/openet/ocean_mask')) # # CGM - The NLCD mask will only work for CONUS # output_img = output_img.updateMask( # ee.Image('USGS/NLCD/NLCD2016').select(['landcover']).mask()) tcorr_img = tcorr_img\ .set({ 'CLOUD_COVER': image_info['properties']['CLOUD_COVER'], 'CLOUD_COVER_LAND': image_info['properties']['CLOUD_COVER_LAND'], # 'SPACECRAFT_ID': image.get('SPACECRAFT_ID'), 'coll_id': coll_id, 'date_ingested': datetime.datetime.today().strftime('%Y-%m-%d'), 'date': export_dt.strftime('%Y-%m-%d'), 'doy': int(export_dt.strftime('%j')), 'model_name': model_name, 'model_version': ssebop.__version__, 'month': int(export_dt.month), 'realtime': 'true' if '/T1_RT' in coll_id else 'false', 'scene_id': scene_id, 'system:time_start': image_info['properties']['system:time_start'], 'tcorr_index': TCORR_INDICES[tcorr_source.upper()], 'tcorr_source': tcorr_source, 'tmax_source': tmax_source, # 'tmax_source': tmax_source.replace( # 'projects/earthengine-legacy/assets/', ''), 'tool_name': TOOL_NAME, 'tool_version': TOOL_VERSION, 'wrs2_path': wrs2_path, 'wrs2_row': wrs2_row, 'wrs2_tile': wrs2_tile, 'year': int(export_dt.year), }) # pprint.pprint(output_img.getInfo()['properties']) # input('ENTER') logging.debug(' Building export task') task = ee.batch.Export.image.toAsset( image=tcorr_img, description=export_id, assetId=asset_id, crs=image_crs, crsTransform='[' + ','.join(list(map(str, export_geo))) + ']', dimensions='{0}x{1}'.format(*export_shape), ) logging.info(' Starting export task') utils.ee_task_start(task) ready_task_count += 1 # logging.debug(f' Ready tasks: {ready_task_count}') # Pause before starting the next date (not export task) ready_task_count = delay_task(delay_time=delay_time, task_max=ready_task_max, task_count=ready_task_count)
def test_is_number(input_value, expected): assert utils.is_number(input_value) == expected