示例#1
0
def playBestMove():
    global gamestate
    global depth_to_consider
    global move
    fuseki_match, fuseki_move = op.make_move(gamestate)
    if fuseki_match:
        print('Found a cool fuseki move!')
        move = fuseki_move[:]
        gamestate = do_move(gamestate, fuseki_move, True)
        return
    print('Thinking hard about this one...')
    p_predicts = sess1.run(res,
                           feed_dict={
                               pre_x: np.copy(gamestate),
                               keep_prob: 1.0
                           })[0]
    printDistribution(p_predicts)
    p_indices = [[
        i, j
    ] for i, j in itertools.product(*[range(19), range(19)])
                 if not np.any(gamestate[i][j])]
    p_indices.sort(key=lambda x: p_predicts[x[0]][x[1]], reverse=True)
    i = 0
    while bc.suicide(np.copy(gamestate), p_indices[i]):
        i += 1
    bestMove = p_indices[i]
    move = bestMove[:]
    gamestate = do_move(gamestate, bestMove, True)
示例#2
0
def playMove():
    global gamestate
    global depth_to_consider
    fuseki_match, fuseki_move = op.make_move(gamestate)
    if fuseki_match:
        print('Found a cool fuseki move!')
        gamestate = do_move(gamestate, fuseki_move, True)
        return
    print('Thinking hard about this one...')
    gametree = growTree(GameTree(name=gamestate), num_moves_considered, depth_to_consider)
    print('I\'ve made a game tree!')
    direction = tMiniMax(gametree)
    gamestate = gametree.children[direction].name
def playMove():
    global gamestate
    global depth_to_consider
    fuseki_match, fuseki_move = op.make_move(gamestate)
    if fuseki_match:
        print('Found a cool fuseki move!')
        gamestate = do_move(gamestate, fuseki_move, True)
        return
    print('Thinking hard about this one...')
    gametree = growTree(GameTree(name=gamestate), num_moves_considered, depth_to_consider)
    print('I\'ve made a game tree!')
    direction = tMiniMax(gametree)
    gamestate = gametree.children[direction].name
def playBestMove():
    global gamestate
    global depth_to_consider
    fuseki_match, fuseki_move = op.make_move(gamestate)
    if fuseki_match:
        print('Found a cool fuseki move!')
        gamestate = do_move(gamestate, fuseki_move, True)
        return
    print('Thinking hard about this one...')
    p_predicts = sess1.run(res, feed_dict={pre_x: np.copy(gamestate), keep_prob: 1.0})[0]
    p_indices = [[i, j] for i, j in itertools.product(*[range(19), range(19)]) if not np.any(gamestate[i][j])]
    p_indices.sort(key=lambda x: p_predicts[x[0]][x[1]], reverse=True)
    bestMove = p_indices[0]
    gamestate = do_move(gamestate, bestMove, True)
def playBestMove():
    global gamestate
    fuseki_match, fuseki_move = op.make_move(gamestate)
    if fuseki_match:
        gamestate = do_move(gamestate, fuseki_move)
#        print('Found a cool fuseki move!')
        return True
    p_predicts = sess.run(res, feed_dict={pre_x: np.copy(gamestate), keep_prob: 1.0})[0]
    p_indices = [[i, j] for i, j in itertools.product(*[range(19), range(19)]) if not np.any(gamestate[i][j])]
    p_indices.sort(key=lambda x: p_predicts[x[0]][x[1]], reverse=True)
    i = 0
    while i < len(p_indices) and bc.suicide(np.copy(gamestate), p_indices[i]):
        i += 1
    if i == len(p_indices):
        gamestate = flip(gamestate)
        return False
    bestMove = p_indices[i]
    gamestate = do_move(gamestate, bestMove)
    return True
示例#6
0
def showBoard():
    result = "   a b c d e f g h i j k l m n o p q r s \n"
    for i in range(19):
        result += str(i).zfill(2) + ' '
        for j in range(19):
            if gamestate[i][j][0] == 1:
                result += '0 ' enumerate(
            else:
                result += '+ '
        result += '\n'
    return result

def do_move(gs, pos, isBlackMove):
    if not isBlackMove:
        gs = flip(gs)
    gs = bc.boardchange(np.copy(gs), pos)
    if isBlackMove:
        gs = flip(gs)
    return gs

def updateTree(root, width, depth):
    if depth == 0:
        root.name[1] = sess2.run(res_v, feed_dict={pre_x_v: root.name[0], keep_prob_v: 1.0})[0][0]
        root.children = None
        return root
    if root.children is not None and root.children != []:
        root.children = [updateTree(c,width,depth-1) for c in root.children]
        return root
    p_predicts = sess1.run(res, feed_dict={pre_x: root.name[0], keep_prob: 1.0})[0]
    p_indices = [[i, j] for i, j in itertools.product(*[range(19), range(19)]) if not np.any(root.name[0][i][j])]
    p_indices.sort(key=lambda x: p_predicts[x[0]][x[1]], reverse=True)
    root.children = [updateTree(GameTree(name=do_move(np.copy(root.name[0]), x, True)), width, depth-1) for x in p_indices[:width]]
    return root

def moveTree(direction):
    global gametree
    gametree = gametree.children[direction]

def matchTreeToState():
    global gamestate
    global gametree
    if gametree.children is None or gametree.children == []:
        gametree = GameTree(name=[gamestate, None])
        return
    for c in gametree.children:
        if gamestate == c.name[0]:
            gametree = c
            return
    gametree = GameTree(name=[gamestate, None])

def playMove():
    global gamestate
    global depth_to_consider
    global num_moves_considered
    global gametree
    fuseki_match, fuseki_move = op.make_move(gamestate)
    if fuseki_match:
        print('Found a cool fuseki move!')
        gamestate = do_move(gamestate, fuseki_move, True)
        matchTreeToState()
        return
    print('Thinking hard about this one...')
    gametree = updateTree(gametree, num_moves_considered, depth_to_consider)
    print('I\'ve made a game tree!')
    moveTree(tMiniMax(gametree))
    gamestate = np.copy(gametree.name[0])

def tMin(tree):
    if tree.children is None or tree.children == []]:
        return tree.name[1]
import numpy as np
import opening as op

pos = np.zeros((19, 19, 3), dtype=np.int)
pos[3][3][1] = 1
print(op.make_move(pos))