示例#1
0
def train():
    # dataloader for training
    train_dataloader = TrainDataLoader(in_path='./data/kg/',
                                       nbatches=100,
                                       threads=8,
                                       sampling_mode="normal",
                                       bern_flag=1,
                                       filter_flag=1,
                                       neg_ent=25,
                                       neg_rel=0)

    # define the model
    transe = TransE(ent_tot=train_dataloader.get_ent_tot(),
                    rel_tot=train_dataloader.get_rel_tot(),
                    dim=Config.entity_embedding_dim,
                    p_norm=1,
                    norm_flag=True)

    # define the loss function
    model = NegativeSampling(model=transe,
                             loss=MarginLoss(margin=5.0),
                             batch_size=train_dataloader.get_batch_size())

    # train the model
    trainer = Trainer(model=model,
                      data_loader=train_dataloader,
                      train_times=1000,
                      alpha=1.0,
                      use_gpu=True)
    trainer.run()
    transe.save_checkpoint('./data/kg/transe.ckpt')
示例#2
0
def generate():
    # dataloader for training
    train_dataloader = TrainDataLoader(in_path='./data/kg/',
                                       nbatches=100,
                                       threads=8,
                                       sampling_mode="normal",
                                       bern_flag=1,
                                       filter_flag=1,
                                       neg_ent=25,
                                       neg_rel=0)

    # define the model
    transe = TransE(ent_tot=train_dataloader.get_ent_tot(),
                    rel_tot=train_dataloader.get_rel_tot(),
                    dim=Config.entity_embedding_dim,
                    p_norm=1,
                    norm_flag=True)

    transe.load_checkpoint('./data/kg/transe.ckpt')
    entity_embedding = transe.get_parameters()['ent_embeddings.weight']
    entity_embedding[0] = 0
    np.save('./data/kg/entity.npy', entity_embedding)
    context_embedding = np.empty_like(entity_embedding)
    context_embedding[0] = 0
    relation = pd.read_table('./data/sub_kg/triple2id.txt',
                             header=None)[[0, 1]]
    entity = pd.read_table('./data/sub_kg/entity2name.txt',
                           header=None)[[0]].to_numpy().flatten()

    for e in entity:
        df = pd.concat(
            [relation[relation[0] == e], relation[relation[1] == e]])
        context = list(set(np.append(df.to_numpy().flatten(), e)))
        context_embedding[e] = np.mean(entity_embedding[context, :], axis=0)

    np.save('./data/kg/context.npy', context_embedding)
示例#3
0
extract_path_vec_list = []
with open("benchmarks/FKB/relation2id.txt") as f:
    f.readline()
    for line in f.readlines():
        extract_path_vec_list.append(path_vec_list[int(line.split('\t')[0])])
f.close()

rel_embedding = nn.Embedding.from_pretrained(
    torch.from_numpy(
        np.array(extract_path_vec_list).astype(dtype='float64')).float())

# define the model
transe = TransE(ent_tot=train_dataloader.get_ent_tot(),
                rel_tot=train_dataloader.get_rel_tot(),
                dim=50,
                p_norm=1,
                norm_flag=True)

transe.load_rel_embeddings(rel_embedding)

# define the loss function
model = NegativeSampling(model=transe,
                         loss=MarginLoss(margin=10.0),
                         batch_size=train_dataloader.get_batch_size())

for k, v in model.named_parameters():
    if k == 'model.rel_embeddings.weight':
        v.requires_grad = False

# train the model
示例#4
0
                                   filter_flag=1,
                                   neg_ent=1,
                                   neg_rel=0)

# dataloader for test
#test_dataloader = TestDataLoader("../openke_data", "link")

pretrain_init = {
    'entity': '../concept_glove.max.npy',
    'relation': '../relation_glove.max.npy'
}
# define the model
transe = TransE(ent_tot=train_dataloader.get_ent_tot(),
                rel_tot=train_dataloader.get_rel_tot(),
                dim=100,
                p_norm=1,
                margin=1.0,
                norm_flag=True,
                init='pretrain',
                init_weights=pretrain_init)

# define the loss function
model = NegativeSampling(model=transe,
                         loss=SigmoidLoss(adv_temperature=1),
                         batch_size=train_dataloader.get_batch_size())

# train the model
checkpoint_dir = Path('./checkpoint/')
checkpoint_dir.mkdir(exist_ok=True, parents=True)
alpha = 0.001
trainer = Trainer(model=model,
                  data_loader=train_dataloader,
                        "--embedding",
                        default=os.path.join(os.path.curdir, "kg_embed"),
                        help="Path to saving embeddings")

    args = parser.parse_args()
    bench_path, ckpt_path, emb_path = args.benchmark, args.checkpoint, args.embedding

    # dataloader for training
    train_dataloader = TrainDataLoader(in_path=bench_path,
                                       nbatches=100,
                                       threads=16,
                                       sampling_mode="normal",
                                       bern_flag=1,
                                       filter_flag=1,
                                       neg_ent=25,
                                       neg_rel=0)

    # define the model
    transe = TransE(ent_tot=train_dataloader.get_ent_tot(),
                    rel_tot=train_dataloader.get_rel_tot(),
                    dim=100,
                    p_norm=1,
                    norm_flag=True)

    transe.load_checkpoint(os.path.join(ckpt_path, "transe.ckpt"))
    params = transe.get_parameters()
    np.savetxt(os.path.join(emb_path, "entity2vec.vec"),
               params["ent_embeddings.weight"])
    np.savetxt(os.path.join(emb_path, "relation2vec.vec"),
               params["rel_embeddings.weight"])
    TASK_REV_MEDIUMHAND,
    TASK_LABELS,
)
import metrics
from utils import Task, openke_predict, get_entity_relationship_dicts

parser = argparse.ArgumentParser()
parser.add_argument("--model", default='transe')
args = parser.parse_args()

ent_list, rel_list = get_entity_relationship_dicts()

if args.model == 'transe':
    model = TransE(ent_tot=len(ent_list),
                   rel_tot=len(rel_list),
                   dim=200,
                   p_norm=1,
                   norm_flag=True)
elif args.model == 'transd':
    model = TransD(ent_tot=len(ent_list),
                   rel_tot=len(rel_list),
                   dim_e=200,
                   dim_r=200,
                   p_norm=1,
                   norm_flag=True)
elif args.model == 'rescal':
    model = RESCAL(ent_tot=len(ent_list), rel_tot=len(rel_list), dim=50)
elif args.model == 'distmult':
    model = DistMult(ent_tot=len(ent_list), rel_tot=len(rel_list), dim=200)
elif args.model == 'complex':
    model = ComplEx(ent_tot=len(ent_list), rel_tot=len(rel_list), dim=200)
示例#7
0
train_dataloader = TrainDataLoader(
    #in_path = "./benchmarks/transe_ske/",
    in_path=base_root,
    nbatches=100,
    threads=8,
    sampling_mode="normal",
    bern_flag=1,
    filter_flag=1,
    neg_ent=25,
    neg_rel=5)

# define the model
transe = TransE(ent_tot=train_dataloader.get_ent_tot(),
                rel_tot=train_dataloader.get_rel_tot(),
                dim=200,
                p_norm=2,
                norm_flag=True)

save_path = os.path.join('checkpoint', phase, 'transe.ckpt')
transe.load_checkpoint(save_path)
rel_emb = transe.get_parameters()['rel_embeddings.weight']
ent_emb = transe.get_parameters()['ent_embeddings.weight']

e_emb, r_emb = dict(), dict()
with open(entity2id_path, 'r', encoding='utf-8') as f:
    next(f)
    for line in f:
        tmp = line.split('\t')
        entity = ''.join(tmp[:-1])
        e_emb[entity] = ent_emb[int(tmp[1]), :]
from openke.data import TrainDataLoader, TestDataLoader
import pickle
import pathlib

# # dataloader for training
train_dataloader = TrainDataLoader(in_path="./dbpedia50_openKE/kb2E/",
                                   nbatches=100,
                                   threads=8,
                                   bern_flag=1)

# dataloader for test
test_dataloader = TestDataLoader("./dbpedia50_openKE/kb2E/", "link")

# define the model
transe = TransE(ent_tot=train_dataloader.get_ent_tot(),
                rel_tot=train_dataloader.get_rel_tot(),
                dim=300)

# define the loss function
model = NegativeSampling(model=transe,
                         loss=MarginLoss(),
                         batch_size=train_dataloader.get_batch_size())

# train the model
trainer = Trainer(model=model,
                  data_loader=train_dataloader,
                  train_times=1000,
                  alpha=0.01,
                  use_gpu=True,
                  opt_method='adagrad')
trainer.run()
train_dataloader = TrainDataLoader(in_path="./benchmarks/WN18RR/",
                                   batch_size=2000,
                                   threads=8,
                                   sampling_mode="cross",
                                   bern_flag=0,
                                   filter_flag=1,
                                   neg_ent=64,
                                   neg_rel=0)

# dataloader for test
test_dataloader = TestDataLoader("./benchmarks/WN18RR/", "link")

# define the model
transe = TransE(ent_tot=train_dataloader.get_ent_tot(),
                rel_tot=train_dataloader.get_rel_tot(),
                dim=1024,
                p_norm=1,
                norm_flag=False,
                margin=6.0)

# define the loss function
model = NegativeSampling(model=transe,
                         loss=SigmoidLoss(adv_temperature=1),
                         batch_size=train_dataloader.get_batch_size(),
                         regul_rate=0.0)

# train the model
trainer = Trainer(model=model,
                  data_loader=train_dataloader,
                  train_times=3000,
                  alpha=2e-5,
                  use_gpu=False,
示例#10
0
train_dataloader = TrainDataLoader(in_path="./benchmarks/LUMB/",
                                   nbatches=100,
                                   threads=8,
                                   sampling_mode="normal",
                                   bern_flag=1,
                                   filter_flag=1,
                                   neg_ent=25,
                                   neg_rel=0)

# dataloader for test
#test_dataloader = TestDataLoader("./benchmarks/LUMB/", "link")

# define the model
transe = TransE(ent_tot=train_dataloader.get_ent_tot(),
                rel_tot=train_dataloader.get_rel_tot(),
                dim=1,
                p_norm=1,
                norm_flag=False)

# define the loss function
model = NegativeSampling(model=transe,
                         loss=MarginLoss(margin=5.0),
                         batch_size=train_dataloader.get_batch_size())

# train the model
trainer = Trainer(model=model,
                  data_loader=train_dataloader,
                  train_times=100,
                  alpha=1.0,
                  use_gpu=False)
trainer.run()
示例#11
0
not_found = 0

for i in range(max_id):
    entity = id2entity[i]
    word = entity2name[entity]
    try:
        weights_matrix[i] = glove[word]
    except KeyError:
        weights_matrix[i] = glove['unk']
        not_found += 1

# define the model
transe = TransE(
    ent_tot=train_dataloader.get_ent_tot(),
    rel_tot=train_dataloader.get_rel_tot(),
    ent_weight=weights_matrix,
    # rel_weight = cur_rel_weight,
    dim=200,
    p_norm=1,
    norm_flag=True)

# define the loss function
model = NegativeSampling(model=transe,
                         loss=MarginLoss(margin=5.0),
                         batch_size=train_dataloader.get_batch_size())

# train the model
trainer = Trainer(model=model,
                  data_loader=train_dataloader,
                  train_times=1000,
                  alpha=1.0,
                  use_gpu=True)
示例#12
0
			if result_code == 1:
				result = "FAKE NEWS"
				break
			else:
				result_true_count += 1
	if result is None:
		if result_true_count >= len(triples) / 2:
			result = "TRUE NEWS"
		else:
			result = "I'M NOT SURE"
	return result

transe = TransE(
	ent_tot = len(entity_map.keys()),
	rel_tot = len(relation_map.keys()),
	dim = 1024,
	p_norm = 1,
	norm_flag = False,
	margin = 6.0
)
transe.load_checkpoint('./checkpoint/transe_fn.ckpt')
tester = Tester(model = transe, use_gpu = False)

number_of_test_example = 100
db = Mongo().get_client()

print("Predicting random entity and relation ...")
result_number = 0
news_list = db['covid_news_data'].find({
    "status": 2
})
if news_list:
示例#13
0
from openke.module.loss import MarginLoss
from openke.module.strategy import NegativeSampling
from openke.data import TrainDataLoader, TestDataLoader

# dataloader for training
train_dataloader = TrainDataLoader(
	in_path = "../OpenKEfiles/DBpedia/Restricted/",
	nbatches = 1000,
	threads = 8,
	sampling_mode = "normal",
	bern_flag = 1,
	filter_flag = 1,
	neg_ent = 25,
	neg_rel = 0)

# dataloader for test
test_dataloader = TestDataLoader("../OpenKEfiles/DBpedia/Restricted/", "link", type_constrain =False)

# define the model
transe = TransE(
	ent_tot = train_dataloader.get_ent_tot(),
	rel_tot = train_dataloader.get_rel_tot(),
	dim = 200,
	p_norm = 1,
	norm_flag = True)

# test the model
transe.load_checkpoint('../checkpoint/dbpedia/restricted/transe.ckpt')
print("loaded checkpoint")
sava_path =  "../checkpoint/dbpedia/restricted/transe.embedding.vec.json"
transe.save_parameters(sava_path)
示例#14
0
# dataloader for training
train_dataloader = TrainDataLoader(
    #in_path = "./benchmarks/transe_ske/",
    in_path=base_path,
    nbatches=100,
    threads=8,
    sampling_mode="normal",
    bern_flag=1,
    filter_flag=1,
    neg_ent=25,
    neg_rel=5)

# define the model
transe = TransE(ent_tot=train_dataloader.get_ent_tot(),
                rel_tot=train_dataloader.get_rel_tot(),
                dim=200,
                p_norm=2,
                norm_flag=True)

# define the loss function
model = NegativeSampling(model=transe,
                         loss=MarginLoss(margin=5.0),
                         batch_size=train_dataloader.get_batch_size())

# train the model
trainer = Trainer(model=model,
                  data_loader=train_dataloader,
                  train_times=1000,
                  alpha=1.0,
                  use_gpu=True)
trainer.run()
示例#15
0
class QuestionAnswerModel(torch.nn.Module):
    def __init__(self,
                 embed_model_path,
                 bert_path,
                 bert_name,
                 n_clusters,
                 embed_method='rotatE',
                 fine_tune=True,
                 attention=True,
                 use_lstm=False,
                 use_dnn=True,
                 attention_method='mine',
                 num_layers=2,
                 bidirectional=False):
        super(QuestionAnswerModel, self).__init__()
        self.embed_method = embed_method
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        logger.info('using device: {}'.format(self.device))
        self.relation_predictor = RelationPredictor(
            bert_path=bert_path,
            bert_name=bert_name,
            fine_tune=fine_tune,
            attention=attention,
            use_lstm=use_lstm,
            use_dnn=use_dnn,
            attention_method=attention_method,
            num_layers=num_layers,
            bidirectional=bidirectional).to(self.device)
        if self.embed_method == 'rotatE':
            self.score_func = self.rotatE
            self.KG_embed = RotatE(ent_tot=43234,
                                   rel_tot=18,
                                   dim=256,
                                   margin=6.0,
                                   epsilon=2.0)
        elif self.embed_method == 'complEx':
            self.score_func = self.complEx
            self.KG_embed = ComplEx(ent_tot=43234, rel_tot=18, dim=200)
        elif self.embed_method == 'DistMult':
            self.score_func = self.DistMult
            self.KG_embed = DistMult(ent_tot=43234, rel_tot=18, dim=200)
        elif self.embed_method == 'TransE':
            self.score_func = self.TransE
            self.KG_embed = TransE(ent_tot=43234,
                                   rel_tot=18,
                                   dim=200,
                                   p_norm=1,
                                   norm_flag=True)
        else:
            raise Exception('embed method not specified!')
        self.embed_model_path = embed_model_path
        self.KG_embed.load_checkpoint(self.embed_model_path)
        self.KG_embed.to(self.device)
        for param in self.KG_embed.parameters():
            param.requires_grad = False
        logger.info('loading pretrained KG embedding from {}'.format(
            self.embed_model_path))
        if self.embed_method == 'rotatE':
            self.cluster = KMeans(n_clusters=n_clusters)
            self.cluster2ent = [[] for _ in range(n_clusters)]
            for idx, label in enumerate(
                    self.cluster.fit_predict(
                        self.KG_embed.ent_embeddings.weight.cpu())):
                self.cluster2ent[label].append(idx)
        self.candidate_generator = CandidateGenerator(
            './MetaQA/KGE_data/train2id.txt')
        # cnt = 0
        # for _ in self.cluster2ent:
        #     cnt += len(_)
        # assert cnt == self.KG_embed.ent_tot

    def _to_tensor(self, inputs):
        return torch.tensor(inputs).to(self.device)

    def complEx(self, head, relation, tail):
        """
        return torch.sum(
            h_re * t_re * r_re
            + h_im * t_im * r_re
            + h_re * t_im * r_im
            - h_im * t_re * r_im,
            -1
        )
        :param head:
        :param relation:
        :param tail:
        :return:
        """
        batch_size = head.shape[1]
        target_size = tail.shape[1]
        # print(batch_size, target_size)
        re_head, im_head = torch.chunk(head.squeeze(2), 2, dim=0)
        re_tail, im_tail = torch.chunk(tail.squeeze(2), 2, dim=0)
        re_relation, im_relation = torch.chunk(relation.squeeze(2), 2, dim=0)
        # 统一转换成(batch_size, target_size, embed_size)
        # print(re_head.shape, re_tail.shape, re_relation.shape)
        re_head = re_head.expand(target_size, -1, -1).permute(1, 0, 2)
        im_head = im_head.expand(target_size, -1, -1).permute(1, 0, 2)
        re_tail = re_tail.expand(batch_size, -1, -1)
        im_tail = im_tail.expand(batch_size, -1, -1)
        im_relation = im_relation.expand(target_size, -1, -1).permute(1, 0, 2)
        re_relation = re_relation.expand(target_size, -1, -1).permute(1, 0, 2)

        score = torch.sum(
            re_head * re_tail * re_relation + im_head * im_tail * re_relation +
            re_head * im_tail * im_relation - im_head * re_tail * im_relation,
            -1)
        # (batch_size, target_size)
        # print(score.shape)
        return score

    def TransE(self, head, relation, tail):
        batch_size = head.shape[0]
        target_size = tail.shape[0]
        if self.KG_embed.norm_flag:
            head = F.normalize(head, 2, -1)
            relation = F.normalize(relation, 2, -1)
            tail = F.normalize(tail, 2, -1)
        # print(head.shape, tail.shape)
        head = head.unsqueeze(0).expand(target_size, -1, -1).permute(1, 0, 2)
        relation = relation.unsqueeze(0).expand(target_size, -1,
                                                -1).permute(1, 0, 2)
        tail = tail.unsqueeze(0).expand(batch_size, -1, -1)
        # print(head.shape, tail.shape)
        score = head + relation - tail
        score = torch.norm(score, self.KG_embed.p_norm, -1)
        # print(score.shape)
        return -score

    def DistMult(self, head, relation, tail):
        batch_size = head.shape[0]
        target_size = tail.shape[0]
        head = head.unsqueeze(0).expand(target_size, -1, -1).permute(1, 0, 2)
        relation = relation.unsqueeze(0).expand(target_size, -1,
                                                -1).permute(1, 0, 2)
        tail = tail.unsqueeze(0).expand(batch_size, -1, -1)
        score = (head * relation) * tail
        score = torch.sum(score, dim=-1)
        # print(score.shape)
        return score

    def rotatE(self, head, relation, tail):
        """
        :param head: (batch_size, entity_embed)
        :param relation: (batch_size, relation_embed)
        :param tail: (target_size, entity_embed)
        :return: scores (batch_size, num_entity)
        """
        pi = self.KG_embed.pi_const
        batch_size = head.shape[0]
        target_size = tail.shape[0]
        re_head, im_head = torch.chunk(head, 2, dim=-1)
        re_tail, im_tail = torch.chunk(tail, 2, dim=-1)
        regularized_relation = relation / (
            self.KG_embed.rel_embedding_range.item() / pi)

        re_relation = torch.cos(regularized_relation)
        im_relation = torch.sin(regularized_relation)
        # (batch_size, ent_tot, entity_embed)
        re_head = re_head.unsqueeze(0).expand(target_size, -1,
                                              -1).permute(1, 0, 2)
        im_head = im_head.unsqueeze(0).expand(target_size, -1,
                                              -1).permute(1, 0, 2)
        re_tail = re_tail.unsqueeze(0).expand(batch_size, -1, -1)
        im_tail = im_tail.unsqueeze(0).expand(batch_size, -1, -1)
        im_relation = im_relation.unsqueeze(0).expand(target_size, -1,
                                                      -1).permute(1, 0, 2)
        re_relation = re_relation.unsqueeze(0).expand(target_size, -1,
                                                      -1).permute(1, 0, 2)

        re_score = re_head * re_relation - im_head * im_relation
        im_score = re_head * im_relation + im_head * re_relation
        re_score = re_score - re_tail
        im_score = im_score - im_tail
        # stack: 增加一维对两个tensor进行堆叠,相当于升维
        score = torch.stack([re_score, im_score], dim=0)
        score = score.norm(dim=0).sum(dim=-1)
        # (batch_size, ent_tot)
        return self.KG_embed.margin - score

    def encode_question(self, question_token_ids, question_masks):
        return self.relation_predictor.encode_question_for_caching(
            self._to_tensor(question_token_ids),
            self._to_tensor(question_masks))

    def predict(self, question_token_ids, question_masks, head_id):
        scores = self.forward(question_token_ids, question_masks, head_id)
        predicts = torch.sort(scores.cpu(), dim=1, descending=True).indices
        # print(predicts.shape)
        return predicts

    # 经实验 sigmoid效果最好
    def forward(self,
                question_token_ids,
                question_masks,
                head_id,
                last_hidden_states=None,
                use_cluster=False):
        if last_hidden_states is None:
            rel_scores = self.relation_predictor(
                self._to_tensor(question_token_ids),
                self._to_tensor(question_masks), None)
        else:
            rel_scores = self.relation_predictor(
                None, None, self._to_tensor(last_hidden_states))
        _index = [_[0] for _ in head_id]
        # print(_index)
        adjacency_scores = torch.index_select(
            self._to_tensor(self.relation_predictor.adjacencyMatrix), 0,
            self._to_tensor(_index))
        adjacency_scores = self.relation_predictor.adjacencyHandler(
            adjacency_scores)
        rel_scores = (rel_scores + adjacency_scores) / 2
        # print(adjacency_scores)
        # relation的预测方式采用self.KG_embed.rel_embeddings.weight的线性组合,取sigmoid(scores)作为组合系数

        # print(predict_relation)
        # predict_relation = torch.clip(predict_relation,
        #                               min=-self.KG_embed.rel_embedding_range.weight.data,
        #                               max=self.KG_embed.rel_embedding_range.weight.data)
        # print(predict_relation)
        # predict_relation = self.relation_predictor(self._to_tensor(question_token_ids),
        # self._to_tensor(question_masks))
        if self.embed_method == 'complEx':
            _tensor = self._to_tensor(head_id)
            head_embed = torch.stack([
                self.KG_embed.ent_re_embeddings(_tensor),
                self.KG_embed.ent_im_embeddings(_tensor)
            ],
                                     dim=0)
            predict_relation = torch.matmul(
                torch.sigmoid(rel_scores),
                torch.stack([
                    self.KG_embed.rel_re_embeddings.weight,
                    self.KG_embed.rel_im_embeddings.weight
                ],
                            dim=0))

        else:
            head_embed = self.KG_embed.ent_embeddings(
                self._to_tensor(head_id)).squeeze(1)
            predict_relation = torch.matmul(
                torch.sigmoid(rel_scores), self.KG_embed.rel_embeddings.weight)

        # candidate_answers = list(self.candidate_generator.get_candidates(_index))
        # print(_index, candidate_answers)
        indices = None
        if not use_cluster:
            if self.embed_method == 'complEx':
                tail_embed = torch.stack([
                    self.KG_embed.ent_re_embeddings.weight,
                    self.KG_embed.ent_im_embeddings.weight
                ],
                                         dim=0)
            else:
                tail_embed = self.KG_embed.ent_embeddings.weight
            # scores越大越好
            scores = self.score_func(head_embed, predict_relation, tail_embed)
            return scores
        else:
            centers = self.cluster.cluster_centers_
            cluster_scores = self.score_func(head_embed, predict_relation,
                                             self._to_tensor(centers))
            # print(cluster_scores)
            values, indices = torch.max(cluster_scores, dim=1)
            # print(values, indices)
            tail_embed = []
            for cluster_index in indices:
                tail_embed.append(
                    torch.index_select(
                        self.KG_embed.ent_embeddings.weight, 0,
                        self._to_tensor(self.cluster2ent[cluster_index])))
            scores = []
            for _head, _rel, _tail in zip(head_embed, predict_relation,
                                          tail_embed):
                scores.append(
                    self.score_func(_head.unsqueeze(0), _rel.unsqueeze(0),
                                    _tail))
            # print(scores)
            return scores, indices
示例#16
0
                                   nbatches=150,
                                   threads=8,
                                   sampling_mode="normal",
                                   bern_flag=1,
                                   filter_flag=1,
                                   neg_ent=25,
                                   neg_rel=0)

# dataloader for test
test_dataloader = TestDataLoader(in_path="./benchmarks/OMKG/",
                                 sampling_mode='link')

# define the model
transe = TransE(ent_tot=train_dataloader.get_ent_tot(),
                rel_tot=train_dataloader.get_rel_tot(),
                dim=50,
                p_norm=1,
                norm_flag=True)

model_e = NegativeSampling(model=transe,
                           loss=MarginLoss(margin=4.0),
                           batch_size=train_dataloader.get_batch_size())

transr = TransR(ent_tot=train_dataloader.get_ent_tot(),
                rel_tot=train_dataloader.get_rel_tot(),
                dim_e=50,
                dim_r=100,
                p_norm=1,
                norm_flag=True,
                rand_init=False)
示例#17
0
 def __init__(self,
              embed_model_path,
              bert_path,
              bert_name,
              n_clusters,
              embed_method='rotatE',
              fine_tune=True,
              attention=True,
              use_lstm=False,
              use_dnn=True,
              attention_method='mine',
              num_layers=2,
              bidirectional=False):
     super(QuestionAnswerModel, self).__init__()
     self.embed_method = embed_method
     self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
     logger.info('using device: {}'.format(self.device))
     self.relation_predictor = RelationPredictor(
         bert_path=bert_path,
         bert_name=bert_name,
         fine_tune=fine_tune,
         attention=attention,
         use_lstm=use_lstm,
         use_dnn=use_dnn,
         attention_method=attention_method,
         num_layers=num_layers,
         bidirectional=bidirectional).to(self.device)
     if self.embed_method == 'rotatE':
         self.score_func = self.rotatE
         self.KG_embed = RotatE(ent_tot=43234,
                                rel_tot=18,
                                dim=256,
                                margin=6.0,
                                epsilon=2.0)
     elif self.embed_method == 'complEx':
         self.score_func = self.complEx
         self.KG_embed = ComplEx(ent_tot=43234, rel_tot=18, dim=200)
     elif self.embed_method == 'DistMult':
         self.score_func = self.DistMult
         self.KG_embed = DistMult(ent_tot=43234, rel_tot=18, dim=200)
     elif self.embed_method == 'TransE':
         self.score_func = self.TransE
         self.KG_embed = TransE(ent_tot=43234,
                                rel_tot=18,
                                dim=200,
                                p_norm=1,
                                norm_flag=True)
     else:
         raise Exception('embed method not specified!')
     self.embed_model_path = embed_model_path
     self.KG_embed.load_checkpoint(self.embed_model_path)
     self.KG_embed.to(self.device)
     for param in self.KG_embed.parameters():
         param.requires_grad = False
     logger.info('loading pretrained KG embedding from {}'.format(
         self.embed_model_path))
     if self.embed_method == 'rotatE':
         self.cluster = KMeans(n_clusters=n_clusters)
         self.cluster2ent = [[] for _ in range(n_clusters)]
         for idx, label in enumerate(
                 self.cluster.fit_predict(
                     self.KG_embed.ent_embeddings.weight.cpu())):
             self.cluster2ent[label].append(idx)
     self.candidate_generator = CandidateGenerator(
         './MetaQA/KGE_data/train2id.txt')
示例#18
0
train_dataloader = TrainDataLoader(in_path="./benchmarks/LUMB/",
                                   nbatches=100,
                                   threads=8,
                                   sampling_mode="normal",
                                   bern_flag=1,
                                   filter_flag=1,
                                   neg_ent=25,
                                   neg_rel=0)

# dataloader for test
test_dataloader = TestDataLoader("./benchmarks/LUMB/", "link")

# define the model
transe = TransE(ent_tot=train_dataloader.get_ent_tot(),
                rel_tot=train_dataloader.get_rel_tot(),
                dim=200,
                p_norm=1,
                norm_flag=True)

# define the loss function
model = NegativeSampling(model=transe,
                         loss=MarginLoss(margin=5.0),
                         batch_size=train_dataloader.get_batch_size())

# train the model
trainer = Trainer(model=model,
                  data_loader=train_dataloader,
                  train_times=100,
                  alpha=1.0,
                  use_gpu=False)
trainer.run()
示例#19
0
train_dataloader = TrainDataLoader(in_path=data_dir,
                                   nbatches=nbatches,
                                   threads=8,
                                   sampling_mode="cross",
                                   bern_flag=1,
                                   filter_flag=1,
                                   neg_ent=negative_samples,
                                   neg_rel=0)

# dataloader for test
test_dataloader = TestDataLoader(data_dir, "triple")

# define the model
transe = TransE(ent_tot=train_dataloader.get_ent_tot(),
                rel_tot=train_dataloader.get_rel_tot(),
                dim=embed_dim,
                p_norm=2,
                norm_flag=True)

# define the loss function
model = NegativeSampling(model=transe,
                         loss=MarginLoss(margin=margin),
                         batch_size=train_dataloader.get_batch_size())

# train the model
trainer = Trainer(model = model, data_loader = train_dataloader, opt_method = "adam", train_times = train_times, \
 alpha = alpha, use_gpu = True, checkpoint_dir=ckpt_path, save_steps=100)
tester = Tester(model=transe, data_loader=test_dataloader, use_gpu=True)
trainer.run(tester, test_every=100)
print("Saving model to {0}...".format(ckpt_path))
transe.save_checkpoint(ckpt_path)