def main(): args = parse_args() OpenKSModel.list_modules() model: ExpertRecModel = OpenKSModel.get_module("PyTorch", "HGTExpertRec")( "openks/data/nsf_dblp_kg/nsfkg/", args) model.preprocess_data() model.load_data_and_model() logger.info('Training HGT with #param: %d' % model.get_n_params()) model.train_expert() model.evaluate()
# Copyright (c) 2022 OpenKS Authors, SCIR, HIT. # All Rights Reserved. from openks.models import OpenKSModel import argparse # 列出已加载模型 OpenKSModel.list_modules() parser = argparse.ArgumentParser( description= 'Implement of SISO, SIMO, MISO, MIMO for Conditional Statement Extraction') # Model parameters. parser.add_argument('--train', type=str, default='data/stmts-train.tsv', help='location of the labeled training set') parser.add_argument('--eval', type=str, default='data/stmts-eval.tsv', help='location of the evaluation set') parser.add_argument('--model_name', type=str, default='MIMO_BERT_LSTM', help='the model to be trained') parser.add_argument('--language_model', type=str, default='resources/model.pt', help='language model checkpoint to use') parser.add_argument('--wordembed', type=str,
# 载入参数配置与数据集载入 loader_config.source_type = SourceType.LOCAL_FILE loader_config.file_type = FileType.OPENKS # loader_config.source_type = SourceType.NEO4J # graph_db = Graph(host='127.0.0.1', http_port=7474, user='******', password='******') # loader_config.graph_db = graph_db loader_config.source_uris = 'openks/data/company-kg' # loader_config.source_uris = 'openks/data/medical-kg' loader_config.data_name = 'my-data-set' # 图谱数据结构载入 graph_loader = GraphLoader(loader_config) graph = graph_loader.graph graph.info_display() ''' 图谱表示学习模型训练 ''' # 列出已加载模型 OpenKSModel.list_modules() # 算法模型选择配置 args = { 'gpu': False, 'learning_rate': 0.001, 'epoch': 10, 'batch_size': 1000, 'optimizer': 'adam', 'hidden_size': 50, 'margin': 4.0, 'model_dir': './', 'eval_freq': 10 } platform = 'Paddle' executor = 'KGLearn' model = 'TransR'
# Copyright (c) 2021 OpenKS Authors, DCD Research Lab, Zhejiang University. # All Rights Reserved. import argparse from openks.models.pytorch import semeval_constant as constant from openks.loaders import loader_config, SourceType, FileType, Loader from openks.models import OpenKSModel ''' 载入数据 ''' # TODO dataset = None ''' 文本信息抽取模型训练 ''' # 列出已加载模型 OpenKSModel.list_modules() # 算法模型选择配置 parser = argparse.ArgumentParser(description='RE args.') parser.add_argument("--model", default=None, type=str, required=True) parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") parser.add_argument("--eval_per_epoch", default=10, type=int, help="How many times it evaluates on dev set per epoch") parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--negative_label", default="no_relation", type=str) parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--train_file", default=None, type=str, help="The path of the training data.")
from openks.loaders import loader_config, SourceType, FileType, Loader from openks.models import OpenKSModel ''' 文本载入与MMD数据结构生成 ''' # 载入参数配置与数据集载入 loader_config.source_type = SourceType.LOCAL_FILE loader_config.file_type = FileType.OPENKS loader_config.source_uris = 'openks/data/patent-text' loader_config.data_name = 'my-data-set' loader = Loader(loader_config) dataset = loader.dataset dataset.info_display() ''' 文本信息抽取模型训练 ''' # 列出已加载模型 OpenKSModel.list_modules() # 算法模型选择配置 args = { 'extractor': 'topic-rake', 'finetuned': '/path/to/finetuned/word_embedding', 'stopword': '/path/to/domain/stopwords.txt', 'stopword_open': '/path/to/common/stopwords.txt', 'params': { 'MIN_SCORE_TOTAL': 0.2, 'MIN_WORD_LEN': 3, 'SUFFIX_REMOVE': True, 'STOPWORD_SINGLE_CHECK': True, 'OPEN_STOPWORD': True, 'WORD_SEPARATOR': True }, 'result_dir': loader_config.source_uris,
from openks.models import OpenKSModel platform = 'Paddle' executor = 'HypernymExtract' model = 'HypernymExtract' print("根据配置,使用 {} 框架,{} 执行器训练 {} 模型。".format(platform, executor, model)) print("-----------------------------------------------") # 模型训练 entity = '苹果' executor = OpenKSModel.get_module(platform, executor) hypernym_extract = executor() res = hypernym_extract.entity2hyper_lst(entity) print(res) print("-----------------------------------------------")
val_data = demand_data(val_texts, val_abs, val_label) #%% '''TRAINING MODEL''' print('--'*10) print('TRAINING MODEL...') print('--'*10) # from openks.models.pytorch.attn_inter import AttInter from torch_geometric.data import Data from openks.models import OpenKSModel platform = 'PyTorch' model_name = 'AttInter' AttInter = OpenKSModel.get_module(platform, model_name) import argparse def parse_args(args=None): parser = argparse.ArgumentParser( description='Training and Testing Command Predictions Models', ) parser.add_argument('--batch_size', default=1, type=int) parser.add_argument('--feat_dim', default=768, type=int) parser.add_argument('--conv_emb_dim', default=300, type=int) parser.add_argument('--pred_hid_dim', default=84, type=int) parser.add_argument('--graph_pooling', default="mean", type=str) parser.add_argument('--gnn_type', default="gin", type=str) parser.add_argument('--conv_drop_ratio', default=0.0, type=float) parser.add_argument('--JK', type=str, default="last",
loader_config.source_type = SourceType.LOCAL_FILE loader_config.file_type = FileType.OPENKS # loader_config.source_type = SourceType.NEO4J # graph_db = Graph(host='127.0.0.1', http_port=7474, user='******', password='******') # loader_config.graph_db = graph_db loader_config.source_uris = 'openks/data/company-kg' # loader_config.source_uris = 'openks/data/FB15k-237' # loader_config.source_uris = 'openks/data/medical-kg' loader_config.data_name = 'my-data-set' # 图谱数据结构载入 graph_loader = GraphLoader(loader_config) graph = graph_loader.graph graph.info_display() ''' 图谱表示学习模型训练 ''' # 列出已加载模型 OpenKSModel.list_modules() # 算法模型选择配置 args = { 'gpu': True, 'learning_rate': 0.001, 'epoch': 500, 'batch_size': 1024, 'optimizer': 'adam', 'hidden_size': 500, 'margin': 4.0, 'model_dir': './', 'eval_freq': 20, 'gamma': 12.0, 'epsilon': 2.0 } platform = 'PyTorch'