示例#1
0
def test_legendre():
    n = 5
    f = openmc.LegendreFilter(n)
    assert f.order == n
    assert f.bins[0] == 'P0'
    assert f.bins[-1] == 'P5'
    assert len(f.bins) == n + 1

    # Make sure __repr__ works
    repr(f)

    # to_xml_element()
    elem = f.to_xml_element()
    assert elem.tag == 'filter'
    assert elem.attrib['type'] == 'legendre'
    assert elem.find('order').text == str(n)
示例#2
0
def test_first_moment(run_in_tmpdir, box_model):
    plain_tally = openmc.Tally()
    plain_tally.scores = ['flux', 'scatter']

    # Create tallies with expansion filters
    leg_tally = openmc.Tally()
    leg_tally.filters = [openmc.LegendreFilter(3)]
    leg_tally.scores = ['scatter']
    leg_sptl_tally = openmc.Tally()
    leg_sptl_tally.filters = [openmc.SpatialLegendreFilter(3, 'x', -5., 5.)]
    leg_sptl_tally.scores = ['scatter']
    sph_scat_filter = openmc.SphericalHarmonicsFilter(5)
    sph_scat_filter.cosine = 'scatter'
    sph_scat_tally = openmc.Tally()
    sph_scat_tally.filters = [sph_scat_filter]
    sph_scat_tally.scores = ['scatter']
    sph_flux_filter = openmc.SphericalHarmonicsFilter(5)
    sph_flux_filter.cosine = 'particle'
    sph_flux_tally = openmc.Tally()
    sph_flux_tally.filters = [sph_flux_filter]
    sph_flux_tally.scores = ['flux']
    zernike_tally = openmc.Tally()
    zernike_tally.filters = [openmc.ZernikeFilter(3, r=10.)]
    zernike_tally.scores = ['scatter']

    # Add tallies to model and ensure they all use the same estimator
    box_model.tallies = [
        plain_tally, leg_tally, leg_sptl_tally, sph_scat_tally, sph_flux_tally,
        zernike_tally
    ]
    for t in box_model.tallies:
        t.estimator = 'analog'

    sp_name = box_model.run()

    # Check that first moment matches the score from the plain tally
    with openmc.StatePoint(sp_name) as sp:
        # Get scores from tally without expansion filters
        flux, scatter = sp.tallies[plain_tally.id].mean.ravel()

        # Check that first moment matches
        first_score = lambda t: sp.tallies[t.id].mean.ravel()[0]
        assert first_score(leg_tally) == scatter
        assert first_score(leg_sptl_tally) == scatter
        assert first_score(sph_scat_tally) == scatter
        assert first_score(sph_flux_tally) == approx(flux)
        assert first_score(zernike_tally) == approx(scatter)