示例#1
0
def test_init(run_in_tmpdir, pin_model_attributes, mpi_intracomm):
    mats, geom, settings, tals, plots, _, _ = \
        pin_model_attributes

    openmc.reset_auto_ids()
    # Check blank initialization of a model
    test_model = openmc.Model()
    assert test_model.geometry.root_universe is None
    assert len(test_model.materials) == 0
    ref_settings = openmc.Settings()
    assert sorted(test_model.settings.__dict__.keys()) == \
        sorted(ref_settings.__dict__.keys())
    for ref_k, ref_v in ref_settings.__dict__.items():
        assert test_model.settings.__dict__[ref_k] == ref_v
    assert len(test_model.tallies) == 0
    assert len(test_model.plots) == 0
    assert test_model._materials_by_id == {}
    assert test_model._materials_by_name == {}
    assert test_model._cells_by_id == {}
    assert test_model._cells_by_name == {}
    assert test_model.is_initialized is False

    # Now check proper init of an actual model. Assume no interference between
    # parameters and so we can apply them all at once instead of testing one
    # parameter initialization at a time
    test_model = openmc.Model(geom, mats, settings, tals, plots)
    assert test_model.geometry is geom
    assert test_model.materials is mats
    assert test_model.settings is settings
    assert test_model.tallies is tals
    assert test_model.plots is plots
    assert test_model._materials_by_id == {1: mats[0], 2: mats[1], 3: mats[2]}
    assert test_model._materials_by_name == {
        'UO2': {mats[0]},
        'Zirc': {mats[1]},
        'Borated water': {mats[2]}
    }
    # The last cell is the one that contains the infinite fuel
    assert test_model._cells_by_id == \
        {2: geom.root_universe.cells[2], 3: geom.root_universe.cells[3],
         4: geom.root_universe.cells[4],
         1: geom.root_universe.cells[2].fill.cells[1]}
    # No cell name for 2 and 3, so we expect a blank name to be assigned to
    # cell 3 due to overwriting
    assert test_model._cells_by_name == {
        'fuel': {geom.root_universe.cells[2]},
        '': {geom.root_universe.cells[3], geom.root_universe.cells[4]},
        'inf fuel': {geom.root_universe.cells[2].fill.cells[1]}
    }
    assert test_model.is_initialized is False

    # Finally test the parameter type checking by passing bad types and
    # obtaining the right exception types
    def_params = [geom, mats, settings, tals, plots]
    for i in range(len(def_params)):
        args = def_params.copy()
        # Try an integer, as that is a bad type for all arguments
        args[i] = i
        with pytest.raises(TypeError):
            test_model = openmc.Model(*args)
示例#2
0
def test_transfer_volumes(run_in_tmpdir):
    """Unit test of volume transfer in restart calculations."""

    op = dummy_operator.DummyOperator()
    op.output_dir = "test_transfer_volumes"

    # Perform simulation using the predictor algorithm
    dt = [0.75]
    power = 1.0
    PredictorIntegrator(op, dt, power).integrate()

    # Load the files
    res = openmc.deplete.ResultsList.from_hdf5(op.output_dir /
                                               "depletion_results.h5")

    # Create a dictionary of volumes to transfer
    res[0].volume['1'] = 1.5
    res[0].volume['2'] = 2.5

    # Create dummy geometry
    mat1 = openmc.Material(material_id=1)
    mat1.depletable = True
    mat2 = openmc.Material(material_id=2)

    cell = openmc.Cell()
    cell.fill = [mat1, mat2]
    root = openmc.Universe()
    root.add_cell(cell)
    geometry = openmc.Geometry(root)

    # Transfer volumes
    res[0].transfer_volumes(openmc.Model(geometry))

    assert mat1.volume == 1.5
    assert mat2.volume is None
示例#3
0
def model():
    model = openmc.Model()
    fuel = openmc.Material()
    fuel.set_density('g/cm3', 12.0)
    fuel.add_nuclide('U235', 1.0)
    al = openmc.Material()
    al.set_density('g/cm3', 1.0)
    al.add_nuclide('H1', 1.0)
    model.materials.extend([fuel, al])

    # 🍩🍩🍩
    zt = openmc.ZTorus(a=3, b=1.5, c=1)
    xt = openmc.XTorus(x0=6, a=3, b=1.5, c=1)
    yt = openmc.YTorus(x0=6, a=6, b=1, c=0.75)
    box = openmc.model.RectangularParallelepiped(-5, 14, -5, 5, -8, 8,
                                                 boundary_type='vacuum')

    xt_cell = openmc.Cell(fill=fuel, region=-xt)
    yt_cell = openmc.Cell(fill=fuel, region=-yt)
    zt_cell = openmc.Cell(fill=fuel, region=-zt)
    outer_cell = openmc.Cell(fill=al, region=-box & +xt & +yt & +zt)
    model.geometry = openmc.Geometry([xt_cell, yt_cell, zt_cell, outer_cell])

    model.settings.particles = 1000
    model.settings.batches = 10
    model.settings.inactive = 5
    return model
示例#4
0
def inf_medium_model(cutoff_energy, source_energy):
    """Infinite medium problem with a monoenergetic photon source"""
    model = openmc.Model()

    m = openmc.Material()
    m.add_nuclide('Zr90', 1.0)
    m.set_density('g/cm3', 1.0)

    sph = openmc.Sphere(r=100.0, boundary_type='reflective')
    cell = openmc.Cell(fill=m, region=-sph)
    model.geometry = openmc.Geometry([cell])

    model.settings.run_mode = 'fixed source'
    model.settings.source = openmc.Source(
        particle='photon',
        energy=openmc.stats.Discrete([source_energy], [1.0]),
    )
    model.settings.particles = 100
    model.settings.batches = 10
    model.settings.cutoff = {'energy_photon': cutoff_energy}

    tally_flux = openmc.Tally(name='flux')
    tally_flux.filters = [
        openmc.EnergyFilter([0.0, cutoff_energy, source_energy]),
        openmc.ParticleFilter(['photon'])
    ]
    tally_flux.scores = ['flux']
    tally_heating = openmc.Tally(name='heating')
    tally_heating.scores = ['heating']
    model.tallies = openmc.Tallies([tally_flux, tally_heating])

    return model
示例#5
0
def test_deplete(run_in_tmpdir, pin_model_attributes, mpi_intracomm):
    mats, geom, settings, tals, plots, op_kwargs, chain_file_xml = \
        pin_model_attributes
    with open('test_chain.xml', 'w') as f:
        f.write(chain_file_xml)
    test_model = openmc.Model(geom, mats, settings, tals, plots)

    initial_mat = mats[0].clone()
    initial_u = initial_mat.get_nuclide_atom_densities()['U235'][1]

    # Note that the chain file includes only U-235 fission to a stable Xe136 w/
    # a yield of 100%. Thus all the U235 we lose becomes Xe136

    # In this test we first run without pre-initializing the shared library
    # data and then compare. Then we repeat with the C API already initialized
    # and make sure we get the same answer
    test_model.deplete([1e6],
                       'predictor',
                       final_step=False,
                       operator_kwargs=op_kwargs,
                       power=1.,
                       output=False)
    # Get the new Xe136 and U235 atom densities
    after_xe = mats[0].get_nuclide_atom_densities()['Xe136'][1]
    after_u = mats[0].get_nuclide_atom_densities()['U235'][1]
    assert after_xe + after_u == pytest.approx(initial_u, abs=1e-15)
    assert test_model.is_initialized is False

    # Reset the initial material densities
    mats[0].nuclides.clear()
    densities = initial_mat.get_nuclide_atom_densities()
    tot_density = 0.
    for nuc, density in densities.values():
        mats[0].add_nuclide(nuc, density)
        tot_density += density
    mats[0].set_density('atom/b-cm', tot_density)

    # Now we can re-run with the pre-initialized API
    test_model.init_lib(output=False, intracomm=mpi_intracomm)
    test_model.deplete([1e6],
                       'predictor',
                       final_step=False,
                       operator_kwargs=op_kwargs,
                       power=1.,
                       output=False)
    # Get the new Xe136 and U235 atom densities
    after_lib_xe = mats[0].get_nuclide_atom_densities()['Xe136'][1]
    after_lib_u = mats[0].get_nuclide_atom_densities()['U235'][1]
    assert after_lib_xe + after_lib_u == pytest.approx(initial_u, abs=1e-15)
    assert test_model.is_initialized is True

    # And end by comparing to the previous case
    assert after_xe == pytest.approx(after_lib_xe, abs=1e-15)
    assert after_u == pytest.approx(after_lib_u, abs=1e-15)

    test_model.finalize_lib()
示例#6
0
def test_calc_volumes(run_in_tmpdir, pin_model_attributes, mpi_intracomm):
    mats, geom, settings, tals, plots, _, _ = pin_model_attributes

    test_model = openmc.Model(geom, mats, settings, tals, plots)

    # With no vol calcs, it should fail
    with pytest.raises(ValueError):
        test_model.calculate_volumes(output=False)

    # Add a cell and mat volume calc
    material_vol_calc = openmc.VolumeCalculation([mats[2]],
                                                 samples=1000,
                                                 lower_left=(-.63, -.63,
                                                             -100.),
                                                 upper_right=(.63, .63, 100.))
    cell_vol_calc = openmc.VolumeCalculation([geom.root_universe.cells[3]],
                                             samples=1000,
                                             lower_left=(-.63, -.63, -100.),
                                             upper_right=(.63, .63, 100.))
    test_model.settings.volume_calculations = \
        [material_vol_calc, cell_vol_calc]

    # Now lets compute the volumes and check to see if it was applied
    # First lets do without using the C-API
    # Make sure the volumes are unassigned first
    assert mats[2].volume is None
    assert geom.root_universe.cells[3].volume is None
    test_model.calculate_volumes(output=False, apply_volumes=True)

    # Now let's test that we have volumes assigned; we arent checking the
    # value, just that the value was changed
    assert mats[2].volume > 0.
    assert geom.root_universe.cells[3].volume > 0.

    # Now reset the values
    mats[2].volume = None
    geom.root_universe.cells[3].volume = None

    # And do again with an initialized library
    for file in ['volume_1.h5', 'volume_2.h5']:
        file = Path(file)
        file.unlink()
    test_model.init_lib(output=False, intracomm=mpi_intracomm)
    test_model.calculate_volumes(output=False, apply_volumes=True)
    assert mats[2].volume > 0.
    assert geom.root_universe.cells[3].volume > 0.
    assert openmc.lib.materials[3].volume == mats[2].volume

    test_model.finalize_lib()
def test_decay(run_in_tmpdir):
    """Test decay-only timesteps where no transport solve is performed"""

    # Create a model with a single nuclide, Sr89
    mat = openmc.Material()
    mat.add_nuclide('Sr89', 1.0)
    mat.set_density('g/cm3', 1.0)
    mat.depletable = True
    r = 5.0
    mat.volume = 4 / 3 * pi * r**3
    surf = openmc.Sphere(r=r, boundary_type='vacuum')
    cell = openmc.Cell(fill=mat, region=-surf)
    geometry = openmc.Geometry([cell])
    settings = openmc.Settings()
    settings.batches = 10
    settings.particles = 1000
    settings.run_mode = 'fixed source'

    # Create depletion chain with only Sr89 and sample its half-life. Note that
    # currently at least one reaction has to exist in the depletion chain
    chain = openmc.deplete.Chain()
    sr89 = openmc.deplete.Nuclide('Sr89')
    sr89.half_life = normalvariate(4365792.0, 6048.0)
    sr89.add_decay_mode('beta-', None, 1.0)
    sr89.add_reaction('(n,gamma)', None, 0.0, 1.0)
    chain.add_nuclide(sr89)
    chain.export_to_xml('test_chain.xml')

    model = openmc.Model(geometry=geometry, settings=settings)
    # Create transport operator
    op = openmc.deplete.Operator(model,
                                 'test_chain.xml',
                                 normalization_mode="source-rate")

    # Deplete with two decay steps
    integrator = openmc.deplete.PredictorIntegrator(
        op, [sr89.half_life, 2 * sr89.half_life], source_rates=[0.0, 0.0])
    integrator.integrate()

    # Get resulting number of atoms
    results = openmc.deplete.ResultsList.from_hdf5('depletion_results.h5')
    _, atoms = results.get_atoms(str(mat.id), "Sr89")

    # Ensure density goes down by a factor of 2 after each half-life
    assert atoms[1] / atoms[0] == pytest.approx(0.5)
    assert atoms[2] / atoms[1] == pytest.approx(0.25)
示例#8
0
def test_plots(run_in_tmpdir, pin_model_attributes, mpi_intracomm):
    mats, geom, settings, tals, plots, _, _ = pin_model_attributes
    test_model = openmc.Model(geom, mats, settings, tals, plots)

    # This test cannot check the correctness of the plot, but it can
    # check that a plot was made and that the expected png files are there

    # We will run the test twice, the first time without C API, the second with
    for i in range(2):
        if i == 1:
            test_model.init_lib(output=False, intracomm=mpi_intracomm)
        test_model.plot_geometry(output=False)

        # Now look for the files
        for fname in ('test.png', 'plot_2.png'):
            test_file = Path(fname)
            assert test_file.exists()
            test_file.unlink()

    test_model.finalize_lib()
示例#9
0
def test_init_finalize_lib(run_in_tmpdir, pin_model_attributes, mpi_intracomm):
    # We are going to init and then make sure data is loaded
    mats, geom, settings, tals, plots, _, _ = pin_model_attributes
    test_model = openmc.Model(geom, mats, settings, tals, plots)
    test_model.init_lib(output=False, intracomm=mpi_intracomm)

    # First check that the API is advertised as initialized
    assert openmc.lib.is_initialized is True
    assert test_model.is_initialized is True
    # Now make sure it actually is initialized by making a call to the lib
    c_mat = openmc.lib.find_material((0.6, 0., 0.))
    # This should be Borated water
    assert c_mat.name == 'Borated water'
    assert c_mat.id == 3

    # Ok, now lets test that we can clear the data and check that it is cleared
    test_model.finalize_lib()

    # First check that the API is advertised as initialized
    assert openmc.lib.is_initialized is False
    assert test_model.is_initialized is False
示例#10
0
def model_surf(request):
    # Select random distance and source energy
    x = uniform(50., 100.)
    E = uniform(0., 20.0e6)

    # Create model
    model = openmc.Model()
    mat = openmc.Material()
    mat.add_nuclide('Zr90', 1.0)
    mat.set_density('g/cm3', 1.0)
    model.materials.append(mat)
    left = openmc.XPlane(-1., boundary_type='vacuum')
    black_surface = openmc.XPlane(x, boundary_type='vacuum')
    right = openmc.XPlane(x + 1)
    void_cell = openmc.Cell(region=+left & -black_surface)
    black_cell = openmc.Cell(region=+black_surface & -right)
    model.geometry = openmc.Geometry([void_cell, black_cell])
    model.settings = openmc.Settings()
    model.settings.run_mode = 'fixed source'
    model.settings.particles = 1000
    model.settings.batches = 20
    particle = request.param
    model.settings.source = openmc.Source(
        space=openmc.stats.Point((0., 0., 0.)),
        angle=openmc.stats.Monodirectional([1., 0., 0.]),
        energy=openmc.stats.Discrete([E], [1.0]),
        particle=particle)

    # Calculate time it will take neutrons to reach purely-absorbing surface
    t0 = time(particle, x, E)

    # Create tally with surface and time filters
    tally = openmc.Tally()
    tally.filters = [
        openmc.SurfaceFilter([black_surface]),
        openmc.TimeFilter([0.0, t0 * 0.999, t0 * 1.001, 100.0])
    ]
    tally.scores = ['current']
    model.tallies.append(tally)
    return model
示例#11
0
def model(request):
    # Select random sphere radius, source position, and source energy
    r = uniform(0., 2.)
    x = uniform(2., 10.)
    E = uniform(0., 20.0e6)

    # Create model
    model = openmc.Model()
    mat = openmc.Material()
    mat.add_nuclide('Zr90', 1.0)
    mat.set_density('g/cm3', 1.0)
    model.materials.append(mat)
    inner_sphere = openmc.Sphere(r=r)
    outer_sphere = openmc.Sphere(r=10.0, boundary_type='vacuum')
    center_cell = openmc.Cell(fill=mat, region=-inner_sphere)
    outer_void = openmc.Cell(region=+inner_sphere & -outer_sphere)
    model.geometry = openmc.Geometry([center_cell, outer_void])
    model.settings = openmc.Settings()
    model.settings.run_mode = 'fixed source'
    model.settings.particles = 1000
    model.settings.batches = 20
    particle = request.param
    model.settings.source = openmc.Source(
        space=openmc.stats.Point((x, 0., 0.)),
        angle=openmc.stats.Monodirectional([-1., 0., 0.]),
        energy=openmc.stats.Discrete([E], [1.0]),
        particle=particle)

    # Calculate time it will take neutrons to reach sphere
    t0 = time(particle, x - r, E)

    # Create tally with time filter
    tally = openmc.Tally()
    tally.filters = [openmc.TimeFilter([0.0, t0, 2 * t0])]
    tally.scores = ['total']
    model.tallies.append(tally)
    return model
示例#12
0
def test_run(run_in_tmpdir, pin_model_attributes, mpi_intracomm):
    mats, geom, settings, tals, plots, _, _ = pin_model_attributes
    test_model = openmc.Model(geom, mats, settings, tals, plots)

    # This case will run by getting the k-eff and tallies for command-line and
    # C API execution modes and ensuring they give the same result.
    sp_path = test_model.run(output=False)
    with openmc.StatePoint(sp_path) as sp:
        cli_keff = sp.k_combined
        cli_flux = sp.get_tally(id=1).get_values(scores=['flux'])[0, 0, 0]
        cli_fiss = sp.get_tally(id=1).get_values(scores=['fission'])[0, 0, 0]

    test_model.init_lib(output=False, intracomm=mpi_intracomm)
    sp_path = test_model.run(output=False)
    with openmc.StatePoint(sp_path) as sp:
        lib_keff = sp.k_combined
        lib_flux = sp.get_tally(id=1).get_values(scores=['flux'])[0, 0, 0]
        lib_fiss = sp.get_tally(id=1).get_values(scores=['fission'])[0, 0, 0]

    # and lets compare results
    assert lib_keff.n == pytest.approx(cli_keff.n, abs=1e-13)
    assert lib_flux == pytest.approx(cli_flux, abs=1e-13)
    assert lib_fiss == pytest.approx(cli_fiss, abs=1e-13)

    # Now we should make sure that the flags for items which should be handled
    # by init are properly set
    with pytest.raises(ValueError):
        test_model.run(threads=1)
    with pytest.raises(ValueError):
        test_model.run(geometry_debug=True)
    with pytest.raises(ValueError):
        test_model.run(restart_file='1.h5')
    with pytest.raises(ValueError):
        test_model.run(tracks=True)

    test_model.finalize_lib()
示例#13
0
文件: test.py 项目: yardasol/openmc
def model():
    model = openmc.Model()

    # materials (M4 steel alloy)
    m4 = openmc.Material()
    m4.set_density('g/cc', 2.3)
    m4.add_nuclide('H1', 0.168018676)
    m4.add_nuclide("H2", 1.93244e-05)
    m4.add_nuclide("O16", 0.561814465)
    m4.add_nuclide("O17", 0.00021401)
    m4.add_nuclide("Na23", 0.021365)
    m4.add_nuclide("Al27", 0.021343)
    m4.add_nuclide("Si28", 0.187439342)
    m4.add_nuclide("Si29", 0.009517714)
    m4.add_nuclide("Si30", 0.006273944)
    m4.add_nuclide("Ca40", 0.018026179)
    m4.add_nuclide("Ca42", 0.00012031)
    m4.add_nuclide("Ca43", 2.51033e-05)
    m4.add_nuclide("Ca44", 0.000387892)
    m4.add_nuclide("Ca46", 7.438e-07)
    m4.add_nuclide("Ca48", 3.47727e-05)
    m4.add_nuclide("Fe54", 0.000248179)
    m4.add_nuclide("Fe56", 0.003895875)
    m4.add_nuclide("Fe57", 8.99727e-05)
    m4.add_nuclide("Fe58", 1.19737e-05)

    s0 = openmc.Sphere(r=240)
    s1 = openmc.Sphere(r=250, boundary_type='vacuum')

    c0 = openmc.Cell(fill=m4, region=-s0)
    c1 = openmc.Cell(region=+s0 & -s1)

    model.geometry = openmc.Geometry([c0, c1])

    # settings
    settings = model.settings
    settings.run_mode = 'fixed source'
    settings.particles = 200
    settings.batches = 2
    settings.max_splits = 200
    settings.photon_transport = True
    space = Point((0.001, 0.001, 0.001))
    energy = Discrete([14E6], [1.0])

    settings.source = openmc.Source(space=space, energy=energy)

    # tally
    mesh = openmc.RegularMesh()
    mesh.lower_left = (-240, -240, -240)
    mesh.upper_right = (240, 240, 240)
    mesh.dimension = (5, 10, 15)

    mesh_filter = openmc.MeshFilter(mesh)

    e_bnds = [0.0, 0.5, 2E7]
    energy_filter = openmc.EnergyFilter(e_bnds)

    particle_filter = openmc.ParticleFilter(['neutron', 'photon'])

    tally = openmc.Tally()
    tally.filters = [mesh_filter, energy_filter, particle_filter]
    tally.scores = ['flux']

    model.tallies.append(tally)

    # weight windows

    # load pre-generated weight windows
    # (created using the same tally as above)
    ww_n_lower_bnds = np.loadtxt('ww_n.txt')
    ww_p_lower_bnds = np.loadtxt('ww_p.txt')

    # create a mesh matching the one used
    # to generate the weight windows
    ww_mesh = openmc.RegularMesh()
    ww_mesh.lower_left = (-240, -240, -240)
    ww_mesh.upper_right = (240, 240, 240)
    ww_mesh.dimension = (5, 6, 7)

    ww_n = openmc.WeightWindows(ww_mesh,
                                ww_n_lower_bnds,
                                None,
                                10.0,
                                e_bnds,
                                max_lower_bound_ratio=1.5)

    ww_p = openmc.WeightWindows(ww_mesh,
                                ww_p_lower_bnds,
                                None,
                                10.0,
                                e_bnds,
                                max_lower_bound_ratio=1.5)

    model.settings.weight_windows = [ww_n, ww_p]

    return model
示例#14
0
def test_py_lib_attributes(run_in_tmpdir, pin_model_attributes, mpi_intracomm):
    mats, geom, settings, tals, plots, _, _ = pin_model_attributes
    test_model = openmc.Model(geom, mats, settings, tals, plots)

    test_model.init_lib(output=False, intracomm=mpi_intracomm)

    # Now we can call rotate_cells, translate_cells, update_densities,
    # and update_cell_temperatures and make sure the changes have taken hold.
    # For each we will first try bad inputs to make sure we get the right
    # errors and then we do a good one which calls the material by name and
    # then id to make sure it worked

    # The rotate_cells and translate_cells will work on the cell named fill, as
    # it is filled with a universe and thus the operation will be valid

    # First rotate_cells
    with pytest.raises(TypeError):
        # Make sure it tells us we have a bad names_or_ids type
        test_model.rotate_cells(None, (0, 0, 90))
    with pytest.raises(TypeError):
        test_model.rotate_cells([None], (0, 0, 90))
    with pytest.raises(openmc.exceptions.InvalidIDError):
        # Make sure it tells us we had a bad id
        test_model.rotate_cells([7200], (0, 0, 90))
    with pytest.raises(openmc.exceptions.InvalidIDError):
        # Make sure it tells us we had a bad id
        test_model.rotate_cells(['bad_name'], (0, 0, 90))
    # Now a good one
    assert np.all(openmc.lib.cells[2].rotation == (0., 0., 0.))
    test_model.rotate_cells([2], (0, 0, 90))
    assert np.all(openmc.lib.cells[2].rotation == (0., 0., 90.))

    # And same thing by name
    test_model.rotate_cells(['fuel'], (0, 0, 180))

    # Now translate_cells. We dont need to re-check the TypeErrors/bad ids,
    # because the other functions use the same hidden method as rotate_cells
    assert np.all(openmc.lib.cells[2].translation == (0., 0., 0.))
    test_model.translate_cells([2], (0, 0, 10))
    assert np.all(openmc.lib.cells[2].translation == (0., 0., 10.))

    # Now lets do the density updates.
    # Check initial conditions
    assert openmc.lib.materials[1].get_density('atom/b-cm') == \
        pytest.approx(0.06891296988603757, abs=1e-13)
    mat_a_dens = np.sum([
        v[1]
        for v in test_model.materials[0].get_nuclide_atom_densities().values()
    ])
    assert mat_a_dens == pytest.approx(0.06891296988603757, abs=1e-8)
    # Change the density
    test_model.update_densities(['UO2'], 2.)
    assert openmc.lib.materials[1].get_density('atom/b-cm') == \
        pytest.approx(2., abs=1e-13)
    mat_a_dens = np.sum([
        v[1]
        for v in test_model.materials[0].get_nuclide_atom_densities().values()
    ])
    assert mat_a_dens == pytest.approx(2., abs=1e-8)

    # Now lets do the cell temperature updates.
    # Check initial conditions
    assert test_model._cells_by_id == \
        {2: geom.root_universe.cells[2], 3: geom.root_universe.cells[3],
         4: geom.root_universe.cells[4],
         1: geom.root_universe.cells[2].fill.cells[1]}
    assert openmc.lib.cells[3].get_temperature() == \
        pytest.approx(293.6, abs=1e-13)
    assert test_model.geometry.root_universe.cells[3].temperature is None
    # Change the temperature
    test_model.update_cell_temperatures([3], 600.)
    assert openmc.lib.cells[3].get_temperature() == \
        pytest.approx(600., abs=1e-13)
    assert test_model.geometry.root_universe.cells[3].temperature == \
        pytest.approx(600., abs=1e-13)

    # And finally material volume
    assert openmc.lib.materials[1].volume == \
        pytest.approx(0.4831931368640985, abs=1e-13)
    # The temperature on the material will be None because its just the default
    assert test_model.materials[0].volume == \
        pytest.approx(0.4831931368640985, abs=1e-13)
    # Change the temperature
    test_model.update_material_volumes(['UO2'], 2.)
    assert openmc.lib.materials[1].volume == pytest.approx(2., abs=1e-13)
    assert test_model.materials[0].volume == pytest.approx(2., abs=1e-13)

    test_model.finalize_lib()
示例#15
0
文件: test.py 项目: yardasol/openmc
def model():
    openmc.reset_auto_ids()
    model = openmc.Model()

    # materials (M4 steel alloy)
    m4 = openmc.Material()
    m4.set_density('g/cc', 2.3)
    m4.add_nuclide('H1', 0.168018676)
    m4.add_nuclide("H2", 1.93244e-05)
    m4.add_nuclide("O16", 0.561814465)
    m4.add_nuclide("O17", 0.00021401)
    m4.add_nuclide("Na23", 0.021365)
    m4.add_nuclide("Al27", 0.021343)
    m4.add_nuclide("Si28", 0.187439342)
    m4.add_nuclide("Si29", 0.009517714)
    m4.add_nuclide("Si30", 0.006273944)
    m4.add_nuclide("Ca40", 0.018026179)
    m4.add_nuclide("Ca42", 0.00012031)
    m4.add_nuclide("Ca43", 2.51033e-05)
    m4.add_nuclide("Ca44", 0.000387892)
    m4.add_nuclide("Ca46", 7.438e-07)
    m4.add_nuclide("Ca48", 3.47727e-05)
    m4.add_nuclide("Fe54", 0.000248179)
    m4.add_nuclide("Fe56", 0.003895875)
    m4.add_nuclide("Fe57", 8.99727e-05)
    m4.add_nuclide("Fe58", 1.19737e-05)

    s0 = openmc.Sphere(r=240)
    s1 = openmc.Sphere(r=250, boundary_type='vacuum')

    c0 = openmc.Cell(fill=m4, region=-s0)
    c1 = openmc.Cell(region=+s0 & -s1)

    model.geometry = openmc.Geometry([c0, c1])

    # settings
    settings = model.settings
    settings.run_mode = 'fixed source'
    settings.particles = 500
    settings.batches = 2
    settings.max_splits = 100
    settings.photon_transport = True
    space = Point((0.001, 0.001, 0.001))
    energy = Discrete([14E6], [1.0])

    settings.source = openmc.Source(space=space, energy=energy)

    # tally
    mesh = openmc.RegularMesh()
    mesh.lower_left = (-240, -240, -240)
    mesh.upper_right = (240, 240, 240)
    mesh.dimension = (3, 5, 7)

    mesh_filter = openmc.MeshFilter(mesh)

    e_bnds = [0.0, 0.5, 2E7]
    energy_filter = openmc.EnergyFilter(e_bnds)

    particle_filter = openmc.ParticleFilter(['neutron', 'photon'])

    tally = openmc.Tally()
    tally.filters = [mesh_filter, energy_filter, particle_filter]
    tally.scores = ['flux']

    model.tallies.append(tally)

    return model
示例#16
0
文件: test.py 项目: yardasol/openmc
def test_full(run_in_tmpdir, problem, multiproc):
    """Full system test suite.

    Runs an entire OpenMC simulation with depletion coupling and verifies
    that the outputs match a reference file.  Sensitive to changes in
    OpenMC.

    This test runs a complete OpenMC simulation and tests the outputs.
    It will take a while.

    """

    geometry, lower_left, upper_right = problem

    # OpenMC-specific settings
    settings = openmc.Settings()
    settings.particles = 100
    settings.batches = 10
    settings.inactive = 0
    space = openmc.stats.Box(lower_left, upper_right)
    settings.source = openmc.Source(space=space)
    settings.seed = 1
    settings.verbosity = 1

    model = openmc.Model(geometry=geometry, settings=settings)

    # Create operator
    chain_file = Path(__file__).parents[2] / 'chain_simple.xml'
    op = openmc.deplete.Operator(model, chain_file)
    op.round_number = True

    # Power and timesteps
    dt1 = 15. * 24 * 60 * 60  # 15 days
    dt2 = 1.5 * 30 * 24 * 60 * 60  # 1.5 months
    N = floor(dt2 / dt1)
    dt = np.full(N, dt1)
    power = 2.337e15 * 4 * JOULE_PER_EV * 1e6  # MeV/second cm from CASMO

    # Perform simulation using the predictor algorithm
    openmc.deplete.pool.USE_MULTIPROCESSING = multiproc
    openmc.deplete.PredictorIntegrator(op, dt, power).integrate()

    # Get path to test and reference results
    path_test = op.output_dir / 'depletion_results.h5'
    path_reference = Path(__file__).with_name('test_reference.h5')

    # If updating results, do so and return
    if config['update']:
        shutil.copyfile(str(path_test), str(path_reference))
        return

    # Load the reference/test results
    res_test = openmc.deplete.ResultsList.from_hdf5(path_test)
    res_ref = openmc.deplete.ResultsList.from_hdf5(path_reference)

    # Assert same mats
    for mat in res_ref[0].mat_to_ind:
        assert mat in res_test[0].mat_to_ind, \
            "Material {} not in new results.".format(mat)
    for nuc in res_ref[0].nuc_to_ind:
        assert nuc in res_test[0].nuc_to_ind, \
            "Nuclide {} not in new results.".format(nuc)

    for mat in res_test[0].mat_to_ind:
        assert mat in res_ref[0].mat_to_ind, \
            "Material {} not in old results.".format(mat)
    for nuc in res_test[0].nuc_to_ind:
        assert nuc in res_ref[0].nuc_to_ind, \
            "Nuclide {} not in old results.".format(nuc)

    tol = 1.0e-6
    for mat in res_test[0].mat_to_ind:
        for nuc in res_test[0].nuc_to_ind:
            _, y_test = res_test.get_atoms(mat, nuc)
            _, y_old = res_ref.get_atoms(mat, nuc)

            # Test each point
            correct = True
            for i, ref in enumerate(y_old):
                if ref != y_test[i]:
                    if ref != 0.0:
                        correct = np.abs(y_test[i] - ref) / ref <= tol
                    else:
                        correct = False

            assert correct, "Discrepancy in mat {} and nuc {}\n{}\n{}".format(
                mat, nuc, y_old, y_test)

    # Compare statepoint files with depletion results

    t_test, k_test = res_test.get_eigenvalue()
    t_ref, k_ref = res_ref.get_eigenvalue()
    k_state = np.empty_like(k_ref)

    n_tallies = np.empty(N + 1, dtype=int)

    # Get statepoint files for all BOS points and EOL
    for n in range(N + 1):
        statepoint = openmc.StatePoint("openmc_simulation_n{}.h5".format(n))
        k_n = statepoint.k_combined
        k_state[n] = [k_n.nominal_value, k_n.std_dev]
        n_tallies[n] = len(statepoint.tallies)
    # Look for exact match pulling from statepoint and depletion_results
    assert np.all(k_state == k_test)
    assert np.allclose(k_test, k_ref)

    # Check that no additional tallies are loaded from the files
    assert np.all(n_tallies == 0)
示例#17
0
# Create an initial uniform spatial source distribution over fissionable zones
bounds = [-0.62992, -0.62992, -1, 0.62992, 0.62992, 1]
uniform_dist = openmc.stats.Box(bounds[:3], bounds[3:], only_fissionable=True)
settings.source = openmc.source.Source(space=uniform_dist)

entropy_mesh = openmc.RegularMesh()
entropy_mesh.lower_left = [-0.39218, -0.39218, -1.e50]
entropy_mesh.upper_right = [0.39218, 0.39218, 1.e50]
entropy_mesh.dimension = [10, 10, 1]
settings.entropy_mesh = entropy_mesh

###############################################################################
#                   Initialize and run depletion calculation
###############################################################################

model = openmc.Model(geometry=geometry, settings=settings)

# Create depletion "operator"
chain_file = 'chain_simple.xml'
op = openmc.deplete.Operator(model, chain_file)

# Perform simulation using the predictor algorithm
time_steps = [1.0, 1.0, 1.0, 1.0, 1.0]  # days
power = 174  # W/cm, for 2D simulations only (use W for 3D)
integrator = openmc.deplete.PredictorIntegrator(op, time_steps, power, timestep_units='d')
integrator.integrate()

###############################################################################
#                    Read depletion calculation results
###############################################################################