def test_record_line_search_armijo_goldstein(self, m): self.setup_endpoints(m) recorder = WebRecorder(self._accepted_token, suppress_output=True) self.setup_sellar_model() model = self.prob.model model.nonlinear_solver = NewtonSolver() model.linear_solver = ScipyIterativeSolver() model._nonlinear_solver.options['solve_subsystems'] = True model._nonlinear_solver.options['max_sub_solves'] = 4 ls = model._nonlinear_solver.linesearch = ArmijoGoldsteinLS( bound_enforcement='vector') # This is pretty bogus, but it ensures that we get a few LS iterations. ls.options['c'] = 100.0 ls.add_recorder(recorder) self.prob.setup(check=False) t0, t1 = run_driver(self.prob) self.prob.cleanup() expected_abs_error = 3.49773898733e-9 expected_rel_error = expected_abs_error / 2.9086436370499857e-08 solver_iteration = json.loads(self.solver_iterations) self.assertAlmostEqual(solver_iteration['abs_err'], expected_abs_error) self.assertAlmostEqual(solver_iteration['rel_err'], expected_rel_error) self.assertEqual(solver_iteration['solver_output'], []) self.assertEqual(solver_iteration['solver_residuals'], [])
def setup(self): nn = self.options['num_nodes'] self.add_subsystem(name='pack', subsys=packSize(num_nodes=nn), promotes_inputs=['*'], promotes_outputs=['*']) self.add_subsystem(name='pcm', subsys=pcmSize(num_nodes=nn), promotes_inputs=['*'], promotes_outputs=['*']) self.add_subsystem(name='ohp', subsys=OHP(num_nodes=nn), promotes_inputs=['*'], promotes_outputs=['*']) self.add_subsystem(name='mass', subsys=packMass(num_nodes=nn), promotes_inputs=['*'], promotes_outputs=['*']) self.set_input_defaults('frame_mass', 0.01, units='kg') self.nonlinear_solver = NewtonSolver(maxiter=30, atol=1e-10, rtol=1e-100) self.nonlinear_solver.options['solve_subsystems'] = True self.nonlinear_solver.options['max_sub_solves'] = 500 self.nonlinear_solver.linesearch = ArmijoGoldsteinLS() self.linear_solver = DirectSolver() self.nonlinear_solver.options['err_on_non_converge'] = True
def setup(self): self.add_subsystem('n1', Node(n_in=1, n_out=2), promotes_inputs=[('I_in:0', 'I_in')]) self.add_subsystem('n2', Node()) # leaving defaults self.add_subsystem('R1', Resistor(R=100.), promotes_inputs=[('V_out', 'Vg')]) self.add_subsystem('R2', Resistor(R=10000.)) self.add_subsystem('D1', Diode(), promotes_inputs=[('V_out', 'Vg')]) self.connect('n1.V', ['R1.V_in', 'R2.V_in']) self.connect('R1.I', 'n1.I_out:0') self.connect('R2.I', 'n1.I_out:1') self.connect('n2.V', ['R2.V_out', 'D1.V_in']) self.connect('R2.I', 'n2.I_in:0') self.connect('D1.I', 'n2.I_out:0') self.nonlinear_solver = NewtonSolver() self.linear_solver = DirectSolver() self.nonlinear_solver.options['iprint'] = 2 self.nonlinear_solver.options['maxiter'] = 10 self.nonlinear_solver.options['solve_subsystems'] = True self.nonlinear_solver.linesearch = ArmijoGoldsteinLS() self.nonlinear_solver.linesearch.options['maxiter'] = 10 self.nonlinear_solver.linesearch.options['iprint'] = 2
def test_record_line_search_armijo_goldstein(self, m): self.setup_endpoints(m) self.setup_sellar_model() model = self.prob.model model.nonlinear_solver = NewtonSolver() model.linear_solver = ScipyKrylov() model._nonlinear_solver.options['solve_subsystems'] = True model._nonlinear_solver.options['max_sub_solves'] = 4 ls = model._nonlinear_solver.linesearch = ArmijoGoldsteinLS(bound_enforcement='vector') # This is pretty bogus, but it ensures that we get a few LS iterations. ls.options['c'] = 100.0 ls.add_recorder(self.recorder) self.prob.setup(check=False) t0, t1 = run_driver(self.prob) self.prob.cleanup() upload(self.filename, self._accepted_token) expected_abs_error = 3.49773898733e-9 expected_rel_error = expected_abs_error / 2.9086436370499857e-08 solver_iteration = json.loads(self.solver_iterations) expected_solver_output = [ {'name': 'con_cmp1.con1', 'values': [-22.42830237]}, {'name': 'd1.y1', 'values': [25.58830237]}, {'name': 'con_cmp2.con2', 'values': [-11.941511849]}, {'name': 'pz.z', 'values': [5.0, 2.0]}, {'name': 'obj_cmp.obj', 'values': [28.588308165]}, {'name': 'd2.y2', 'values': [12.058488150]}, {'name': 'px.x', 'values': [1.0]} ] self.assertAlmostEqual(solver_iteration['abs_err'], expected_abs_error) self.assertAlmostEqual(solver_iteration['rel_err'], expected_rel_error) self.assertEqual(solver_iteration['solver_residuals'], []) for o in expected_solver_output: self.assert_array_close(o, solver_iteration['solver_output'])
def test_circuit_advanced_newton(self): from openmdao.api import ArmijoGoldsteinLS, Problem, IndepVarComp from openmdao.test_suite.scripts.circuit_analysis import Circuit p = Problem() model = p.model model.add_subsystem('ground', IndepVarComp('V', 0., units='V')) model.add_subsystem('source', IndepVarComp('I', 0.1, units='A')) model.add_subsystem('circuit', Circuit()) model.connect('source.I', 'circuit.I_in') model.connect('ground.V', 'circuit.Vg') p.setup() # you can change the NewtonSolver settings in circuit after setup is called newton = p.model.circuit.nonlinear_solver newton.options['iprint'] = 2 newton.options['maxiter'] = 10 newton.options['solve_subsystems'] = True newton.linesearch = ArmijoGoldsteinLS() newton.linesearch.options['maxiter'] = 10 newton.linesearch.options['iprint'] = 2 # set some initial guesses p['circuit.n1.V'] = 10. p['circuit.n2.V'] = 1e-3 p.run_model() assert_rel_error(self, p['circuit.n1.V'], 9.90830282, 1e-5) assert_rel_error(self, p['circuit.n2.V'], 0.73858486, 1e-5) assert_rel_error(self, p['circuit.R1.I'], 0.09908303, 1e-5) assert_rel_error(self, p['circuit.R2.I'], 0.00091697, 1e-5) assert_rel_error(self, p['circuit.D1.I'], 0.00091697, 1e-5) # sanity check: should sum to .1 Amps assert_rel_error(self, p['circuit.R1.I'] + p['circuit.D1.I'], .1, 1e-6)
def test_circuit_voltage_source(self): from openmdao.api import ArmijoGoldsteinLS, Problem, IndepVarComp, BalanceComp, ExecComp from openmdao.api import NewtonSolver, DirectSolver, NonlinearRunOnce, LinearRunOnce from openmdao.test_suite.scripts.circuit_analysis import Circuit p = Problem() model = p.model model.add_subsystem('ground', IndepVarComp('V', 0., units='V')) # replacing the fixed current source with a BalanceComp to represent a fixed Voltage source # model.add_subsystem('source', IndepVarComp('I', 0.1, units='A')) model.add_subsystem('batt', IndepVarComp('V', 1.5, units='V')) bal = model.add_subsystem('batt_balance', BalanceComp()) bal.add_balance('I', units='A', eq_units='V') model.add_subsystem('circuit', Circuit()) model.add_subsystem( 'batt_deltaV', ExecComp('dV = V1 - V2', V1={'units': 'V'}, V2={'units': 'V'}, dV={'units': 'V'})) # current into the circuit is now the output state from the batt_balance comp model.connect('batt_balance.I', 'circuit.I_in') model.connect('ground.V', ['circuit.Vg', 'batt_deltaV.V2']) model.connect('circuit.n1.V', 'batt_deltaV.V1') # set the lhs and rhs for the battery residual model.connect('batt.V', 'batt_balance.rhs:I') model.connect('batt_deltaV.dV', 'batt_balance.lhs:I') p.setup() ################### # Solver Setup ################### # change the circuit solver to RunOnce because we're # going to converge at the top level of the model with newton instead p.model.circuit.nonlinear_solver = NonlinearRunOnce() p.model.circuit.linear_solver = LinearRunOnce() # Put Newton at the top so it can also converge the new BalanceComp residual newton = p.model.nonlinear_solver = NewtonSolver() p.model.linear_solver = DirectSolver() newton.options['iprint'] = 2 newton.options['maxiter'] = 20 newton.options['solve_subsystems'] = True newton.linesearch = ArmijoGoldsteinLS() newton.linesearch.options['maxiter'] = 10 newton.linesearch.options['iprint'] = 2 # set initial guesses from the current source problem p['circuit.n1.V'] = 9.8 p['circuit.n2.V'] = .7 p.run_model() assert_rel_error(self, p['circuit.n1.V'], 1.5, 1e-5) assert_rel_error(self, p['circuit.n2.V'], 0.676232, 1e-5) assert_rel_error(self, p['circuit.R1.I'], 0.015, 1e-5) assert_rel_error(self, p['circuit.R2.I'], 8.23767999e-05, 1e-5) assert_rel_error(self, p['circuit.D1.I'], 8.23767999e-05, 1e-5)
def setup(self): thermo_spec = species_data.janaf design = self.options['design'] statics = self.options['statics'] self.add_subsystem('fc', FlightConditions(thermo_data=thermo_spec, elements=AIR_MIX)) self.add_subsystem('inlet', Inlet(design=design, thermo_data=thermo_spec, elements=AIR_MIX)) self.add_subsystem('fan', Compressor(map_data=FanMap, design=design, thermo_data=thermo_spec, elements=AIR_MIX, bleed_names=[], statics=statics, map_extrap=True), promotes_inputs=[('Nmech','LP_Nmech')]) self.add_subsystem('splitter', Splitter(design=design, thermo_data=thermo_spec, elements=AIR_MIX, statics=statics)) self.add_subsystem('duct4', Duct(design=design, thermo_data=thermo_spec, elements=AIR_MIX, statics=statics)) self.add_subsystem('lpc', Compressor(map_data=LPCmap, design=design, thermo_data=thermo_spec, elements=AIR_MIX, statics=statics, map_extrap=True),promotes_inputs=[('Nmech','LP_Nmech')]) self.add_subsystem('duct6', Duct(design=design, thermo_data=thermo_spec, elements=AIR_MIX, statics=statics)) self.add_subsystem('hpc', Compressor(map_data=HPCmap, design=design, thermo_data=thermo_spec, elements=AIR_MIX, bleed_names=['cool1','cool2','cust'], statics=statics, map_extrap=True),promotes_inputs=[('Nmech','HP_Nmech')]) self.add_subsystem('bld3', BleedOut(design=design, statics=statics, bleed_names=['cool3','cool4'])) self.add_subsystem('burner', Combustor(design=design,thermo_data=thermo_spec, inflow_elements=AIR_MIX, air_fuel_elements=AIR_FUEL_MIX, fuel_type='Jet-A(g)', statics=statics)) self.add_subsystem('hpt', Turbine(map_data=HPTmap, design=design, thermo_data=thermo_spec, elements=AIR_FUEL_MIX, bleed_names=['cool3','cool4'], statics=statics, map_extrap=True),promotes_inputs=[('Nmech','HP_Nmech')]) self.add_subsystem('duct11', Duct(design=design, thermo_data=thermo_spec, elements=AIR_FUEL_MIX, statics=statics)) self.add_subsystem('lpt', Turbine(map_data=LPTmap, design=design, thermo_data=thermo_spec, elements=AIR_FUEL_MIX, bleed_names=['cool1','cool2'], statics=statics, map_extrap=True),promotes_inputs=[('Nmech','LP_Nmech')]) self.add_subsystem('duct13', Duct(design=design, thermo_data=thermo_spec, elements=AIR_FUEL_MIX, statics=statics)) self.add_subsystem('core_nozz', Nozzle(nozzType='CV', lossCoef='Cv', thermo_data=thermo_spec, elements=AIR_FUEL_MIX)) self.add_subsystem('byp_bld', BleedOut(design=design, statics=statics, bleed_names=['bypBld'])) self.add_subsystem('duct15', Duct(design=design, thermo_data=thermo_spec, elements=AIR_MIX, statics=statics)) self.add_subsystem('byp_nozz', Nozzle(nozzType='CV', lossCoef='Cv', thermo_data=thermo_spec, elements=AIR_MIX)) self.add_subsystem('lp_shaft', Shaft(num_ports=3),promotes_inputs=[('Nmech','LP_Nmech')]) self.add_subsystem('hp_shaft', Shaft(num_ports=2),promotes_inputs=[('Nmech','HP_Nmech')]) self.add_subsystem('perf', Performance(num_nozzles=2, num_burners=1)) self.connect('inlet.Fl_O:tot:P', 'perf.Pt2') self.connect('hpc.Fl_O:tot:P', 'perf.Pt3') self.connect('burner.Wfuel', 'perf.Wfuel_0') self.connect('inlet.F_ram', 'perf.ram_drag') self.connect('core_nozz.Fg', 'perf.Fg_0') self.connect('byp_nozz.Fg', 'perf.Fg_1') self.connect('fan.trq', 'lp_shaft.trq_0') self.connect('lpc.trq', 'lp_shaft.trq_1') self.connect('lpt.trq', 'lp_shaft.trq_2') self.connect('hpc.trq', 'hp_shaft.trq_0') self.connect('hpt.trq', 'hp_shaft.trq_1') self.connect('fc.Fl_O:stat:P', 'core_nozz.Ps_exhaust') self.connect('fc.Fl_O:stat:P', 'byp_nozz.Ps_exhaust') balance = self.add_subsystem('balance', BalanceComp()) if design: balance.add_balance('W', units='lbm/s', eq_units='lbf') self.connect('balance.W', 'inlet.Fl_I:stat:W') self.connect('perf.Fn', 'balance.lhs:W') balance.add_balance('FAR', eq_units='degR', lower=1e-4, val=.017) self.connect('balance.FAR', 'burner.Fl_I:FAR') self.connect('burner.Fl_O:tot:T', 'balance.lhs:FAR') balance.add_balance('lpt_PR', val=1.5, lower=1.001, upper=8, eq_units='hp', use_mult=True, mult_val=-1) self.connect('balance.lpt_PR', 'lpt.PR') self.connect('lp_shaft.pwr_in_real', 'balance.lhs:lpt_PR') self.connect('lp_shaft.pwr_out_real', 'balance.rhs:lpt_PR') balance.add_balance('hpt_PR', val=1.5, lower=1.001, upper=8, eq_units='hp', use_mult=True, mult_val=-1) self.connect('balance.hpt_PR', 'hpt.PR') self.connect('hp_shaft.pwr_in_real', 'balance.lhs:hpt_PR') self.connect('hp_shaft.pwr_out_real', 'balance.rhs:hpt_PR') else: balance.add_balance('FAR', val=0.017, lower=1e-4, eq_units='lbf') self.connect('balance.FAR', 'burner.Fl_I:FAR') self.connect('perf.Fn', 'balance.lhs:FAR') balance.add_balance('W', units='lbm/s', lower=10., upper=1000., eq_units='inch**2') self.connect('balance.W', 'inlet.Fl_I:stat:W') self.connect('core_nozz.Throat:stat:area', 'balance.lhs:W') balance.add_balance('BPR', lower=2., upper=10., eq_units='inch**2') self.connect('balance.BPR', 'splitter.BPR') self.connect('byp_nozz.Throat:stat:area', 'balance.lhs:BPR') balance.add_balance('lp_Nmech', val=1.5, units='rpm', lower=500., eq_units='hp', use_mult=True, mult_val=-1) self.connect('balance.lp_Nmech', 'LP_Nmech') self.connect('lp_shaft.pwr_in_real', 'balance.lhs:lp_Nmech') self.connect('lp_shaft.pwr_out_real', 'balance.rhs:lp_Nmech') balance.add_balance('hp_Nmech', val=1.5, units='rpm', lower=500., eq_units='hp', use_mult=True, mult_val=-1) self.connect('balance.hp_Nmech', 'HP_Nmech') self.connect('hp_shaft.pwr_in_real', 'balance.lhs:hp_Nmech') self.connect('hp_shaft.pwr_out_real', 'balance.rhs:hp_Nmech') self.set_order(['balance', 'fc', 'inlet', 'fan', 'splitter', 'duct4', 'lpc', 'duct6', 'hpc', 'bld3', 'burner', 'hpt', 'duct11', 'lpt', 'duct13', 'core_nozz', 'byp_bld', 'duct15', 'byp_nozz', 'lp_shaft', 'hp_shaft', 'perf']) connect_flow(self, 'fc.Fl_O', 'inlet.Fl_I', connect_w=False) connect_flow(self, 'inlet.Fl_O', 'fan.Fl_I') connect_flow(self, 'fan.Fl_O', 'splitter.Fl_I') connect_flow(self, 'splitter.Fl_O1', 'duct4.Fl_I') connect_flow(self, 'duct4.Fl_O', 'lpc.Fl_I') connect_flow(self, 'lpc.Fl_O', 'duct6.Fl_I') connect_flow(self, 'duct6.Fl_O', 'hpc.Fl_I') connect_flow(self, 'hpc.Fl_O', 'bld3.Fl_I') connect_flow(self, 'bld3.Fl_O', 'burner.Fl_I') connect_flow(self, 'burner.Fl_O', 'hpt.Fl_I') connect_flow(self, 'hpt.Fl_O', 'duct11.Fl_I') connect_flow(self, 'duct11.Fl_O', 'lpt.Fl_I') connect_flow(self, 'lpt.Fl_O', 'duct13.Fl_I') connect_flow(self, 'duct13.Fl_O','core_nozz.Fl_I') connect_flow(self, 'splitter.Fl_O2', 'byp_bld.Fl_I') connect_flow(self, 'byp_bld.Fl_O', 'duct15.Fl_I') connect_flow(self, 'duct15.Fl_O', 'byp_nozz.Fl_I') connect_flow(self, 'hpc.cool1', 'lpt.cool1', connect_stat=False) connect_flow(self, 'hpc.cool2', 'lpt.cool2', connect_stat=False) connect_flow(self, 'bld3.cool3', 'hpt.cool3', connect_stat=False) connect_flow(self, 'bld3.cool4', 'hpt.cool4', connect_stat=False) newton = self.nonlinear_solver = NewtonSolver() newton.options['atol'] = 1e-8 newton.options['rtol'] = 1e-8 newton.options['iprint'] = 2 newton.options['maxiter'] = 50 newton.options['solve_subsystems'] = True newton.options['max_sub_solves'] = 100 # ls = newton.linesearch = BoundsEnforceLS() ls = newton.linesearch = ArmijoGoldsteinLS() ls.options['maxiter'] = 3 ls.options['bound_enforcement'] = 'scalar' # ls.options['print_bound_enforce'] = True self.linear_solver = DirectSolver(assemble_jac=True)
# set the lhs and rhs for the battery residual model.connect('batt.V', 'batt_balance.rhs:I') model.connect('batt_deltaV.dV', 'batt_balance.lhs:I') p.setup() ################### # Solver Setup ################### # change the circuit solver to RunOnce because we're # going to converge at the top level of the model with newton instead p.model.circuit.nonlinear_solver = NonlinearRunOnce() p.model.circuit.linear_solver = LinearRunOnce() # Put Newton at the top so it can also converge the new BalanceComp residual newton = p.model.nonlinear_solver = NewtonSolver() p.model.linear_solver = DirectSolver() newton.options['iprint'] = 2 newton.options['maxiter'] = 20 newton.options['solve_subsystems'] = True newton.linesearch = ArmijoGoldsteinLS() newton.linesearch.options['maxiter'] = 10 newton.linesearch.options['iprint'] = 2 # set initial guesses from the current source problem p['circuit.n1.V'] = 9.8 p['circuit.n2.V'] = .7 p.run_model()
def setup(self): newton = self.nonlinear_solver = NewtonSolver() newton.options['maxiter'] = 100 newton.options['iprint'] = 2 newton.options['atol'] = 1e-10 newton.options['rtol'] = 1e-10 self.options['assembled_jac_type'] = 'dense' self.linear_solver = DirectSolver(assemble_jac=True) # ln_bt = newton.linesearch = BoundsEnforceLS() ln_bt = newton.linesearch = ArmijoGoldsteinLS() ln_bt.options['maxiter'] = 2 ln_bt.options['bound_enforcement'] = 'scalar' ln_bt.options['iprint'] = -1 #ln_bt.options['maxiter'] = 1 # Once the concentration of a species reaches its minimum, we # can essentially remove it from the problem. This switch controls # whether to do this. self.remove_trace_species = False # multiply a damping function that scales down the residual for trace species self.use_trace_damping = True thermo = self.options['thermo'] mode = self.options['mode'] num_prod = thermo.num_prod num_element = thermo.num_element # Input vars self.add_input('init_prod_amounts', val=thermo.init_prod_amounts, shape=(num_prod,), desc="initial mass fractions of products, before equilibrating") self.add_input('P', val=1.0, units="bar", desc="Pressure") if mode == "T": # T is an input self.add_input('T', val=400., units="degK", desc="Temperature") elif mode == "h" or mode == "S": # T becomes another state variable if mode == "h": # hP solve self.add_input('h', val=0., units="cal/g", desc="Enthalpy") elif mode == "S": # SP solve self.add_input('S', val=0., units="cal/(g*degK)", desc="Entropy") self.T_idx = num_prod + num_element self.add_output('T', val=400., units="degK", desc="Temperature", lower=1., res_ref=100 ) # State vars self.n_init = np.ones(num_prod) / num_prod / 10 # initial guess for n # for a known solution, these are the orders of magnitude of the variables. # We'll try setting scaling to +/1 1 order around thee values mag = np.array([3.23319258e-04, 1.00000000e-10, 1.10131241e-05, 1.00000000e-10, 1.15755853e-08, 2.95692989e-09, 1.00000000e-10, 2.69578794e-02, 1.00000000e-10, 7.23198523e-03]) #mag = np.ones(num_prod) self.add_output('n', shape=num_prod, val=self.n_init, desc="mole fractions of the mixture", lower=1e-10, res_ref=10000. ) self.add_output('pi', val=np.ones(num_element), desc="modified lagrange multipliers from the Gibbs lagrangian") # Explicit Outputs self.add_output('b0', shape=num_element, # when converged, b0=b desc='assigned kg-atoms of element i per total kg of reactant ' 'for the initial prod amounts') self.add_output('n_moles', lower=1e-10, val=0.034, shape=1, desc="1/molecular weight of gas") # allocate the newton Jacobian self.size = size = num_prod + num_element if mode != "T": size += 1 # added T as a state variable self._dRdy = np.zeros((size, size)) self._rhs = np.zeros(size) # used for solve_linear # Cached stuff for speed self.H0_T = None self.S0_T = None self.dH0_dT = None self.dS0_dT = None self.sum_n_H0_T = None # self.deriv_options['check_type'] = 'cs' # self.deriv_options['check_step_size'] = 1e-50 # self.deriv_options['type'] = 'fd' # self.deriv_options['step_size'] = 1e-5 self.declare_partials('n', ['n', 'pi', 'P', 'T']) self.declare_partials('pi', ['n', 'init_prod_amounts']) self.declare_partials('b0', ['b0', 'init_prod_amounts']) self.declare_partials('n_moles', 'n') self.declare_partials('n_moles', 'n_moles', val=-1) if mode == 'h': self.declare_partials('T', ['n', 'h', 'T']) elif mode == 'S': self.declare_partials('T', ['n', 'S', 'T', 'P'])
def setup(self): thermo_spec = species_data.janaf design = self.options['design'] statics = self.options['statics'] self.add_subsystem('fc', FlightConditions(thermo_data=thermo_spec, elements=AIR_MIX)) self.add_subsystem('inlet', Inlet(design=design, thermo_data=thermo_spec, elements=AIR_MIX)) self.add_subsystem('duct1', Duct(design=design, thermo_data=thermo_spec, elements=AIR_MIX, statics=statics)) self.add_subsystem('comp', Compressor(map_data=AXI5, design=design, thermo_data=thermo_spec, elements=AIR_MIX, bleed_names=['cool1','cool2'], statics=statics, map_extrap=True),promotes_inputs=['Nmech']) self.add_subsystem('burner', Combustor(design=design,thermo_data=thermo_spec, inflow_elements=AIR_MIX, air_fuel_elements=AIR_FUEL_MIX, fuel_type='JP-7', statics=statics)) self.add_subsystem('turb', Turbine(map_data=LPT2269, design=design, thermo_data=thermo_spec, elements=AIR_FUEL_MIX, bleed_names=['cool1','cool2'], statics=statics, map_extrap=True),promotes_inputs=['Nmech']) self.add_subsystem('ab', Combustor(design=design,thermo_data=thermo_spec, inflow_elements=AIR_FUEL_MIX, air_fuel_elements=AIR_FUEL_MIX, fuel_type='JP-7', statics=statics)) self.add_subsystem('nozz', Nozzle(nozzType='CD', lossCoef='Cv', thermo_data=thermo_spec, elements=AIR_FUEL_MIX, internal_solver=True)) self.add_subsystem('shaft', Shaft(num_ports=2),promotes_inputs=['Nmech']) self.add_subsystem('perf', Performance(num_nozzles=1, num_burners=2)) self.connect('duct1.Fl_O:tot:P', 'perf.Pt2') self.connect('comp.Fl_O:tot:P', 'perf.Pt3') self.connect('burner.Wfuel', 'perf.Wfuel_0') self.connect('ab.Wfuel', 'perf.Wfuel_1') self.connect('inlet.F_ram', 'perf.ram_drag') self.connect('nozz.Fg', 'perf.Fg_0') self.connect('comp.trq', 'shaft.trq_0') self.connect('turb.trq', 'shaft.trq_1') # self.connect('shaft.Nmech', 'comp.Nmech') # self.connect('shaft.Nmech', 'turb.Nmech') self.connect('fc.Fl_O:stat:P', 'nozz.Ps_exhaust') balance = self.add_subsystem('balance', BalanceComp()) if design: balance.add_balance('W', units='lbm/s', eq_units='lbf') self.connect('balance.W', 'inlet.Fl_I:stat:W') self.connect('perf.Fn', 'balance.lhs:W') balance.add_balance('FAR', eq_units='degR', lower=1e-4, val=.017) self.connect('balance.FAR', 'burner.Fl_I:FAR') self.connect('burner.Fl_O:tot:T', 'balance.lhs:FAR') balance.add_balance('turb_PR', val=1.5, lower=1.001, upper=8, eq_units='hp', rhs_val=0.) self.connect('balance.turb_PR', 'turb.PR') self.connect('shaft.pwr_net', 'balance.lhs:turb_PR') # self.set_order(['fc', 'inlet', 'duct1', 'comp', 'burner', 'turb', 'ab', 'nozz', 'shaft', 'perf', 'thrust_balance', 'temp_balance', 'shaft_balance']) self.set_order(['balance', 'fc', 'inlet', 'duct1', 'comp', 'burner', 'turb', 'ab', 'nozz', 'shaft', 'perf']) else: balance.add_balance('FAR', eq_units='degR', lower=1e-4, val=.017) self.connect('balance.FAR', 'burner.Fl_I:FAR') self.connect('burner.Fl_O:tot:T', 'balance.lhs:FAR') balance.add_balance('Nmech', val=8000., units='rpm', lower=500., eq_units='hp', rhs_val=0.) self.connect('balance.Nmech', 'Nmech') self.connect('shaft.pwr_net', 'balance.lhs:Nmech') balance.add_balance('W', val=100.0, units='lbm/s', eq_units=None, rhs_val=2.0) self.connect('balance.W', 'inlet.Fl_I:stat:W') self.connect('comp.map.RlineMap', 'balance.lhs:W') self.set_order(['balance', 'fc', 'inlet', 'duct1', 'comp', 'burner', 'turb', 'ab', 'nozz', 'shaft', 'perf']) if statics: connect_flow(self, 'fc.Fl_O', 'inlet.Fl_I', connect_w=False) connect_flow(self, 'inlet.Fl_O', 'duct1.Fl_I') connect_flow(self, 'duct1.Fl_O', 'comp.Fl_I') connect_flow(self, 'comp.Fl_O', 'burner.Fl_I') connect_flow(self, 'burner.Fl_O', 'turb.Fl_I') connect_flow(self, 'turb.Fl_O', 'ab.Fl_I') connect_flow(self, 'ab.Fl_O', 'nozz.Fl_I') else: connect_flow(self, 'fc.Fl_O', 'inlet.Fl_I', connect_w=False) connect_flow(self, 'inlet.Fl_O', 'duct1.Fl_I', connect_stat=False) connect_flow(self, 'duct1.Fl_O', 'comp.Fl_I', connect_stat=False) connect_flow(self, 'comp.Fl_O', 'burner.Fl_I', connect_stat=False) connect_flow(self, 'burner.Fl_O', 'turb.Fl_I', connect_stat=False) connect_flow(self, 'turb.Fl_O', 'ab.Fl_I', connect_stat=False) connect_flow(self, 'ab.Fl_O', 'nozz.Fl_I', connect_stat=False) connect_flow(self, 'comp.cool1', 'turb.cool1', connect_stat=False) connect_flow(self, 'comp.cool2', 'turb.cool2', connect_stat=False) newton = self.nonlinear_solver = NewtonSolver() newton.options['atol'] = 1e-6 newton.options['rtol'] = 1e-6 newton.options['iprint'] = 2 newton.options['maxiter'] = 15 newton.options['solve_subsystems'] = True newton.options['max_sub_solves'] = 100 # newton.linesearch = BoundsEnforceLS() newton.linesearch = ArmijoGoldsteinLS() # newton.linesearch.options['c'] = .0001 newton.linesearch.options['bound_enforcement'] = 'scalar' newton.linesearch.options['iprint'] = -1 self.linear_solver = DirectSolver(assemble_jac=True)
def run_a320_analysis(): # Set up OpenMDAO to analyze the airplane num_nodes = 9 prob = Problem() prob.model = A320AnalysisGroup() prob.model.nonlinear_solver = NewtonSolver(iprint=2) # prob.model.nonlinear_solver = NonlinearBlockGS(iprint=2) prob.model.options['assembled_jac_type'] = 'csc' prob.model.linear_solver = DirectSolver(assemble_jac=True) prob.model.nonlinear_solver.options['solve_subsystems'] = True prob.model.nonlinear_solver.options['maxiter'] = 50 prob.model.nonlinear_solver.options['atol'] = 1e-7 prob.model.nonlinear_solver.options['rtol'] = 1e-7 prob.model.nonlinear_solver.linesearch = ArmijoGoldsteinLS(bound_enforcement='vector', maxiter=5, print_bound_enforce=False) prob.setup(check=True, mode='fwd') # set some (required) mission parameters. Each phase needs a vertical and air-speed # the entire mission needs a cruise altitude and range # U_EAS = equivalent air speed # VS = vertical speed = Rate of Climb ones_nn = np.ones((num_nodes,)) #""" # climb 1: initial climb to 5000 ft prob.set_val('climb1.fltcond|vs', 2500*ones_nn, units='ft/min') prob.set_val('climb1.fltcond|Ueas', 175*ones_nn, units='kn') # climb 2: 5000 to 15000 ft prob.set_val('climb2|h0', 5000, units='ft') prob.set_val('climb2.fltcond|vs', 2000*ones_nn, units='ft/min') prob.set_val('climb2.fltcond|Ueas', 290*ones_nn, units='kn') # climb 3: 15000 to 24000 ft prob.set_val('climb3|h0', 15000, units='ft') prob.set_val('climb3.fltcond|vs', 1400*ones_nn, units='ft/min') prob.set_val('climb3.fltcond|Ueas', 290*ones_nn, units='kn') # climb 4 (Mach climb): 24000 ft to cruise prob.set_val('climb4|h0', 24000, units='ft') prob.set_val('climb4.fltcond|vs', 1000*ones_nn, units='ft/min') prob.set_val('climb4.fltcond|Ueas', 240*ones_nn, units='kn') # cruise. M=0.78 at 37000 ft. U_tas = 450 kn, U_eas = 240 kn prob.set_val('cruise|h0', 37000, units='ft') prob.set_val('cruise.fltcond|vs', 0.1*ones_nn, units='ft/min') # horizontal cruise prob.set_val('cruise.fltcond|Ueas', 240*ones_nn, units='kn') # descent 1: initial descent to 24000 ft prob.set_val('descent1.fltcond|vs', -500*ones_nn, units='ft/min') # 1000 prob.set_val('descent1.fltcond|Ueas', 240*ones_nn, units='kn') # descent 2: 24000 to 10000 ft prob.set_val('descent2|h0', 24000, units='ft') prob.set_val('descent2.fltcond|vs', -1000*ones_nn, units='ft/min') # 3500 too steep? prob.set_val('descent2.fltcond|Ueas', 290*ones_nn, units='kn') # descent 3: approach prob.set_val('descent3|h0', 10000, units='ft') prob.set_val('descent3.fltcond|vs', -500*ones_nn, units='ft/min') # 1500 prob.set_val('descent3.fltcond|Ueas', 250*ones_nn, units='kn') """ prob.set_val('climb1.fltcond|vs', 1000*ones_nn, units='ft/min') prob.set_val('climb1.fltcond|Ueas', 70*ones_nn, units='kn') # cruise. M=0.78 at 37000 ft. U_tas = 450 kn, U_eas = 240 kn prob.set_val('cruise|h0', 20000, units='ft') prob.set_val('cruise.fltcond|vs', 0.1*ones_nn, units='ft/min') # horizontal cruise prob.set_val('cruise.fltcond|Ueas', 150*ones_nn, units='kn') # descent 1: initial descent to 24000 ft prob.set_val('descent1.fltcond|vs', -800*ones_nn, units='ft/min') # 1000 prob.set_val('descent1.fltcond|Ueas', 100*ones_nn, units='kn') """ prob.set_val('mission_range', 2200, units='NM') # see Airbus AC-A320 pp 143 for payload-range chart # (optional) guesses for takeoff speeds may help with convergence prob.set_val('v0v1.fltcond|Utrue',np.ones((num_nodes))*150,units='kn') prob.set_val('v1vr.fltcond|Utrue',np.ones((num_nodes))*150,units='kn') prob.set_val('v1v0.fltcond|Utrue',np.ones((num_nodes))*150,units='kn') # set some airplane-specific values. The throttle edits are to derate the takeoff power of the PT6A prob['v0v1.throttle'] = np.ones((num_nodes)) prob['v1vr.throttle'] = np.ones((num_nodes)) prob['rotate.throttle'] = np.ones((num_nodes)) prob.run_model() return prob