示例#1
0
def PIV1(I0, I1, winsize, overlap, dt, smooth=True):
    u0, v0 = pyprocess.extended_search_area_piv(I0.astype(np.int32),
                                                I1.astype(np.int32),
                                                window_size=winsize,
                                                overlap=overlap,
                                                dt=dt,
                                                search_area_size=winsize)
    x, y = pyprocess.get_coordinates(image_size=I0.shape,
                                     search_area_size=winsize,
                                     window_size=winsize,
                                     overlap=overlap)
    if smooth == True:
        u1 = smoothn(u0)[0]
        v1 = smoothn(v0)[0]
        frame_data = pd.DataFrame(data=np.array(
            [x.flatten(), y.flatten(),
             u1.flatten(),
             v1.flatten()]).T,
                                  columns=['x', 'y', 'u', 'v'])
    else:
        frame_data = pd.DataFrame(data=np.array(
            [x.flatten(), y.flatten(),
             u0.flatten(),
             v0.flatten()]).T,
                                  columns=['x', 'y', 'u', 'v'])
    return frame_data
示例#2
0
def process(args, bga, bgb, reflection):
    file_a, file_b, counter = args

    # read images into numpy arrays
    frame_a = tools.imread(file_a)
    frame_b = tools.imread(file_b)

    # removing background and reflections
    frame_a = frame_a - bga
    frame_b = frame_b - bgb
    frame_a[reflection == 255] = 0
    frame_b[reflection == 255] = 0

    #applying a static mask (taking out the regions where we have walls)
    yp = [580, 435, 0, 0, 580, 580, 0, 0, 435, 580]
    xp = [570, 570, 680, 780, 780, 0, 0, 105, 230, 230]
    pnts = draw.polygon(yp, xp, frame_a.shape)
    frame_a[pnts] = 0
    frame_b[pnts] = 0

    # checking the resulting frame
    #fig, ax = plt.subplots(2,2)
    #ax[0,0].imshow(frame_a_org, cmap='gray')
    #ax[0,1].imshow(frame_a, cmap='gray')
    #ax[1,0].imshow(frame_b_org, cmap='gray')
    #ax[1,1].imshow(frame_b, cmap='gray')
    #plt.tight_layout()
    #plt.show()

    # main piv processing
    u, v, sig2noise = pyprocess.extended_search_area_piv( frame_a, frame_b, \
        window_size=48, overlap=16, dt=0.001094, search_area_size=64, sig2noise_method='peak2peak')
    x, y = pyprocess.get_coordinates(image_size=frame_a.shape,
                                     window_size=48,
                                     overlap=16)
    u, v, mask = validation.local_median_val(u, v, 2000, 2000, size=2)
    u, v = filters.replace_outliers(u,
                                    v,
                                    method='localmean',
                                    max_iter=10,
                                    kernel_size=2)
    u, *_ = smoothn(u, s=1.0)
    v, *_ = smoothn(v, s=1.0)

    # saving the results
    save_file = tools.create_path(file_a, 'Analysis')
    tools.save(x, y, u, v, mask, save_file + '.dat')
示例#3
0
def ProcessPIV(args, bga, bgb, reflection, stg):
    # read images into numpy arrays
    file_a, file_b, counter = args
    frame_a = tools.imread(file_a)
    frame_b = tools.imread(file_b)
    # removing background and reflections
    if bgb is not None:
        frame_a = frame_a - bga
        frame_b = frame_b - bgb
        frame_a[reflection == 255] = 0
        frame_b[reflection == 255] = 0
    #plt.imshow(frame_a, cmap='gray')
    #plt.show()

    # main piv processing
    u, v, s2n = pyprocess.extended_search_area_piv( frame_a, frame_b, \
        window_size=stg['WS'], overlap=stg['OL'], dt=stg['DT'], search_area_size=stg['SA'], sig2noise_method='peak2peak')
    x, y = pyprocess.get_coordinates(image_size=frame_a.shape,
                                     window_size=stg['WS'],
                                     overlap=stg['OL'])

    if stg['BVR'] == 'on':
        u, v, mask = validation.local_median_val(u,
                                                 v,
                                                 stg['MF'][0],
                                                 stg['MF'][1],
                                                 size=2)
        u, v, mask = validation.global_val(u,
                                           v,
                                           u_thresholds=stg['GF'][0],
                                           v_thresholds=stg['GF'][1])
        u, v = filters.replace_outliers(u,
                                        v,
                                        method='localmean',
                                        max_iter=10,
                                        kernel_size=2)
        u, *_ = smoothn(u, s=0.5)
        v, *_ = smoothn(v, s=0.5)
    x, y, u, v = scaling.uniform(x, y, u, v, stg['SC'])
    # saving the results
    save_file = tools.create_path(file_a, 'Analysis')
    tools.save(x, y, u, v, s2n, save_file + '.dat')
 def smoothn_r(self):
     """Smoothn postprocessing results."""
     result_fnames = []
     for i, f in enumerate(self.p['fnames']):
         data = np.loadtxt(f)
         u, _, _, _ = piv_smt.smoothn(
             data[:, 2], s=self.p['smoothn_val'], isrobust=self.p['robust'])
         v, _, _, _ = piv_smt.smoothn(
             data[:, 3], s=self.p['smoothn_val'], isrobust=self.p['robust'])
         save_fname = create_save_vec_fname(
             path=f,
             postfix='_smthn')
         save(data[:, 0],
              data[:, 1],
              u, v,
              data[:, 4],
              data[:, 5],
              save_fname,
              delimiter=self.delimiter)
         result_fnames.append(save_fname)
     return result_fnames
示例#5
0
    def func(args):
        """A function to process each image pair."""

        # this line is REQUIRED for multiprocessing to work
        # always use it in your custom function

        file_a, file_b, counter = args

        # counter2=str(counter2)
        #####################
        # Here goes you code
        #####################

        " read images into numpy arrays"
        frame_a = imread(os.path.join(settings.filepath_images, file_a))
        frame_b = imread(os.path.join(settings.filepath_images, file_b))

        # Miguel: I just had a quick look, and I do not understand the reason
        # for this step.
        #  I propose to remove it.
        # frame_a = (frame_a*1024).astype(np.int32)
        # frame_b = (frame_b*1024).astype(np.int32)

        " crop to ROI"
        if settings.ROI == "full":
            frame_a = frame_a
            frame_b = frame_b
        else:
            frame_a = frame_a[settings.ROI[0]:settings.ROI[1],
                              settings.ROI[2]:settings.ROI[3]]
            frame_b = frame_b[settings.ROI[0]:settings.ROI[1],
                              settings.ROI[2]:settings.ROI[3]]

        if settings.invert is True:
            frame_a = invert(frame_a)
            frame_b = invert(frame_b)

        if settings.show_all_plots:
            fig, ax = plt.subplots(1, 1)
            ax.imshow(frame_a, cmap=plt.get_cmap('Reds'))
            ax.imshow(frame_b, cmap=plt.get_cmap('Blues'), alpha=.5)
            plt.show()

        if settings.dynamic_masking_method in ("edge", "intensity"):
            frame_a, mask_a = preprocess.dynamic_masking(
                frame_a,
                method=settings.dynamic_masking_method,
                filter_size=settings.dynamic_masking_filter_size,
                threshold=settings.dynamic_masking_threshold,
            )
            frame_b, mask_b = preprocess.dynamic_masking(
                frame_b,
                method=settings.dynamic_masking_method,
                filter_size=settings.dynamic_masking_filter_size,
                threshold=settings.dynamic_masking_threshold,
            )

        # "first pass"
        x, y, u, v, s2n = first_pass(frame_a, frame_b, settings)

        if settings.show_all_plots:
            plt.figure()
            plt.quiver(x, y, u, -v, color='b')
            # plt.gca().invert_yaxis()
            # plt.gca().set_aspect(1.)
            # plt.title('after first pass, invert')
            # plt.show()

        # " Image masking "
        if settings.image_mask:
            image_mask = np.logical_and(mask_a, mask_b)
            mask_coords = preprocess.mask_coordinates(image_mask)
            # mark those points on the grid of PIV inside the mask
            grid_mask = preprocess.prepare_mask_on_grid(x, y, mask_coords)

            # mask the velocity
            u = np.ma.masked_array(u, mask=grid_mask)
            v = np.ma.masked_array(v, mask=grid_mask)
        else:
            mask_coords = []
            u = np.ma.masked_array(u, mask=np.ma.nomask)
            v = np.ma.masked_array(v, mask=np.ma.nomask)

        if settings.validation_first_pass:
            u, v, mask = validation.typical_validation(u, v, s2n, settings)

        if settings.show_all_plots:
            # plt.figure()
            plt.quiver(x, y, u, -v, color='r')
            plt.gca().invert_yaxis()
            plt.gca().set_aspect(1.)
            plt.title('after first pass validation new, inverted')
            plt.show()

        # "filter to replace the values that where marked by the validation"
        if settings.num_iterations == 1 and settings.replace_vectors:
            # for multi-pass we cannot have holes in the data
            # after the first pass
            u, v = filters.replace_outliers(
                u,
                v,
                method=settings.filter_method,
                max_iter=settings.max_filter_iteration,
                kernel_size=settings.filter_kernel_size,
            )
        # don't even check if it's true or false
        elif settings.num_iterations > 1:
            u, v = filters.replace_outliers(
                u,
                v,
                method=settings.filter_method,
                max_iter=settings.max_filter_iteration,
                kernel_size=settings.filter_kernel_size,
            )

            # "adding masks to add the effect of all the validations"
        if settings.smoothn:
            u, dummy_u1, dummy_u2, dummy_u3 = smoothn.smoothn(
                u, s=settings.smoothn_p)
            v, dummy_v1, dummy_v2, dummy_v3 = smoothn.smoothn(
                v, s=settings.smoothn_p)

        if settings.image_mask:
            grid_mask = preprocess.prepare_mask_on_grid(x, y, mask_coords)
            u = np.ma.masked_array(u, mask=grid_mask)
            v = np.ma.masked_array(v, mask=grid_mask)
        else:
            u = np.ma.masked_array(u, np.ma.nomask)
            v = np.ma.masked_array(v, np.ma.nomask)

        if settings.show_all_plots:
            plt.figure()
            plt.quiver(x, y, u, -v)
            plt.gca().invert_yaxis()
            plt.gca().set_aspect(1.)
            plt.title('before multi pass, inverted')
            plt.show()

        if not isinstance(u, np.ma.MaskedArray):
            raise ValueError("Expected masked array")
        """ Multi pass """

        for i in range(1, settings.num_iterations):

            if not isinstance(u, np.ma.MaskedArray):
                raise ValueError("Expected masked array")

            x, y, u, v, s2n, mask = multipass_img_deform(
                frame_a,
                frame_b,
                i,
                x,
                y,
                u,
                v,
                settings,
                mask_coords=mask_coords)

            # If the smoothing is active, we do it at each pass
            # but not the last one
            if settings.smoothn is True and i < settings.num_iterations - 1:
                u, dummy_u1, dummy_u2, dummy_u3 = smoothn.smoothn(
                    u, s=settings.smoothn_p)
                v, dummy_v1, dummy_v2, dummy_v3 = smoothn.smoothn(
                    v, s=settings.smoothn_p)
            if not isinstance(u, np.ma.MaskedArray):
                raise ValueError('not a masked array anymore')

            if hasattr(settings, 'image_mask') and settings.image_mask:
                grid_mask = preprocess.prepare_mask_on_grid(x, y, mask_coords)
                u = np.ma.masked_array(u, mask=grid_mask)
                v = np.ma.masked_array(v, mask=grid_mask)
            else:
                u = np.ma.masked_array(u, np.ma.nomask)
                v = np.ma.masked_array(v, np.ma.nomask)

            if settings.show_all_plots:
                plt.figure()
                plt.quiver(x, y, u, -1 * v, color='r')
                plt.gca().set_aspect(1.)
                plt.gca().invert_yaxis()
                plt.title('end of the multipass, invert')
                plt.show()

        if settings.show_all_plots and settings.num_iterations > 1:
            plt.figure()
            plt.quiver(x, y, u, -v)
            plt.gca().invert_yaxis()
            plt.gca().set_aspect(1.)
            plt.title('after multi pass, before saving, inverted')
            plt.show()

        # we now use only 0s instead of the image
        # masked regions.
        # we could do Nan, not sure what is best
        u = u.filled(0.)
        v = v.filled(0.)

        # "scales the results pixel-> meter"
        x, y, u, v = scaling.uniform(x,
                                     y,
                                     u,
                                     v,
                                     scaling_factor=settings.scaling_factor)

        if settings.image_mask:
            grid_mask = preprocess.prepare_mask_on_grid(x, y, mask_coords)
            u = np.ma.masked_array(u, mask=grid_mask)
            v = np.ma.masked_array(v, mask=grid_mask)
        else:
            u = np.ma.masked_array(u, np.ma.nomask)
            v = np.ma.masked_array(v, np.ma.nomask)

        # before saving we conver to the "physically relevant"
        # right-hand coordinate system with 0,0 at the bottom left
        # x to the right, y upwards
        # and so u,v

        x, y, u, v = transform_coordinates(x, y, u, v)
        # import pdb; pdb.set_trace()
        # "save to a file"
        tools.save(x,
                   y,
                   u,
                   v,
                   mask,
                   os.path.join(save_path, "field_A%03d.txt" % counter),
                   delimiter="\t")
        # "some other stuff that one might want to use"
        if settings.show_plot or settings.save_plot:
            Name = os.path.join(save_path, "Image_A%03d.png" % counter)
            fig, _ = display_vector_field(
                os.path.join(save_path, "field_A%03d.txt" % counter),
                scale=settings.scale_plot,
            )
            if settings.save_plot is True:
                fig.savefig(Name)
            if settings.show_plot is True:
                plt.show()

        print(f"Image Pair {counter + 1}")
        print(file_a.rsplit('/')[-1], file_b.rsplit('/')[-1])
示例#6
0
    def func(args):
        """A function to process each image pair."""

        # this line is REQUIRED for multiprocessing to work
        # always use it in your custom function

        file_a, file_b, counter = args

        # counter2=str(counter2)
        #####################
        # Here goes you code
        #####################

        ' read images into numpy arrays'
        frame_a = tools.imread(os.path.join(settings.filepath_images, file_a))
        frame_b = tools.imread(os.path.join(settings.filepath_images, file_b))

        ## Miguel: I just had a quick look, and I do not understand the reason for this step.
        #  I propose to remove it.
        #frame_a = (frame_a*1024).astype(np.int32)
        #frame_b = (frame_b*1024).astype(np.int32)

        ' crop to ROI'
        if settings.ROI == 'full':
            frame_a = frame_a
            frame_b = frame_b
        else:
            frame_a = frame_a[settings.ROI[0]:settings.ROI[1],
                              settings.ROI[2]:settings.ROI[3]]
            frame_b = frame_b[settings.ROI[0]:settings.ROI[1],
                              settings.ROI[2]:settings.ROI[3]]
        if settings.dynamic_masking_method == 'edge' or 'intensity':
            frame_a = preprocess.dynamic_masking(
                frame_a,
                method=settings.dynamic_masking_method,
                filter_size=settings.dynamic_masking_filter_size,
                threshold=settings.dynamic_masking_threshold)
            frame_b = preprocess.dynamic_masking(
                frame_b,
                method=settings.dynamic_masking_method,
                filter_size=settings.dynamic_masking_filter_size,
                threshold=settings.dynamic_masking_threshold)
        '''%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'''
        'first pass'
        x, y, u, v, sig2noise_ratio = first_pass(
            frame_a,
            frame_b,
            settings.windowsizes[0],
            settings.overlap[0],
            settings.iterations,
            correlation_method=settings.correlation_method,
            subpixel_method=settings.subpixel_method,
            do_sig2noise=settings.extract_sig2noise,
            sig2noise_method=settings.sig2noise_method,
            sig2noise_mask=settings.sig2noise_mask,
        )

        'validation using gloabl limits and std and local median'
        '''MinMaxU : two elements tuple
            sets the limits of the u displacment component
            Used for validation.

        MinMaxV : two elements tuple
            sets the limits of the v displacment component
            Used for validation.

        std_threshold : float
            sets the  threshold for the std validation

        median_threshold : float
            sets the threshold for the median validation

        filter_method : string
            the method used to replace the non-valid vectors
            Methods:
                'localmean',
                'disk',
                'distance', 

        max_filter_iteration : int
            maximum of filter iterations to replace nans

        filter_kernel_size : int
            size of the kernel used for the filtering'''

        mask = np.full_like(x, False)
        if settings.validation_first_pass == True:
            u, v, mask_g = validation.global_val(u, v, settings.MinMax_U_disp,
                                                 settings.MinMax_V_disp)
            u, v, mask_s = validation.global_std(
                u, v, std_threshold=settings.std_threshold)
            u, v, mask_m = validation.local_median_val(
                u,
                v,
                u_threshold=settings.median_threshold,
                v_threshold=settings.median_threshold,
                size=settings.median_size)
            if settings.extract_sig2noise == True and settings.iterations == 1 and settings.do_sig2noise_validation == True:
                u, v, mask_s2n = validation.sig2noise_val(
                    u,
                    v,
                    sig2noise_ratio,
                    threshold=settings.sig2noise_threshold)
                mask = mask + mask_g + mask_m + mask_s + mask_s2n
            else:
                mask = mask + mask_g + mask_m + mask_s
        'filter to replace the values that where marked by the validation'
        if settings.iterations > 1:
            u, v = filters.replace_outliers(
                u,
                v,
                method=settings.filter_method,
                max_iter=settings.max_filter_iteration,
                kernel_size=settings.filter_kernel_size)
            'adding masks to add the effect of all the validations'
            if settings.smoothn == True:
                u, dummy_u1, dummy_u2, dummy_u3 = smoothn.smoothn(
                    u, s=settings.smoothn_p)
                v, dummy_v1, dummy_v2, dummy_v3 = smoothn.smoothn(
                    v, s=settings.smoothn_p)
        elif settings.iterations == 1 and settings.replace_vectors == True:
            u, v = filters.replace_outliers(
                u,
                v,
                method=settings.filter_method,
                max_iter=settings.max_filter_iteration,
                kernel_size=settings.filter_kernel_size)
            'adding masks to add the effect of all the validations'
            if settings.smoothn == True:
                u, v = filters.replace_outliers(
                    u,
                    v,
                    method=settings.filter_method,
                    max_iter=settings.max_filter_iteration,
                    kernel_size=settings.filter_kernel_size)
                u, dummy_u1, dummy_u2, dummy_u3 = smoothn.smoothn(
                    u, s=settings.smoothn_p)
                v, dummy_v1, dummy_v2, dummy_v3 = smoothn.smoothn(
                    v, s=settings.smoothn_p)

        i = 1
        'all the following passes'
        for i in range(2, settings.iterations + 1):
            x, y, u, v, sig2noise_ratio, mask = multipass_img_deform(
                frame_a,
                frame_b,
                settings.windowsizes[i - 1],
                settings.overlap[i - 1],
                settings.iterations,
                i,
                x,
                y,
                u,
                v,
                correlation_method=settings.correlation_method,
                subpixel_method=settings.subpixel_method,
                do_sig2noise=settings.extract_sig2noise,
                sig2noise_method=settings.sig2noise_method,
                sig2noise_mask=settings.sig2noise_mask,
                MinMaxU=settings.MinMax_U_disp,
                MinMaxV=settings.MinMax_V_disp,
                std_threshold=settings.std_threshold,
                median_threshold=settings.median_threshold,
                median_size=settings.median_size,
                filter_method=settings.filter_method,
                max_filter_iteration=settings.max_filter_iteration,
                filter_kernel_size=settings.filter_kernel_size,
                interpolation_order=settings.interpolation_order)
            # If the smoothing is active, we do it at each pass
            if settings.smoothn == True:
                u, dummy_u1, dummy_u2, dummy_u3 = smoothn.smoothn(
                    u, s=settings.smoothn_p)
                v, dummy_v1, dummy_v2, dummy_v3 = smoothn.smoothn(
                    v, s=settings.smoothn_p)
        '''%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'''
        if settings.extract_sig2noise == True and i == settings.iterations and settings.iterations != 1 and settings.do_sig2noise_validation == True:
            u, v, mask_s2n = validation.sig2noise_val(
                u, v, sig2noise_ratio, threshold=settings.sig2noise_threshold)
            mask = mask + mask_s2n
        if settings.replace_vectors == True:
            u, v = filters.replace_outliers(
                u,
                v,
                method=settings.filter_method,
                max_iter=settings.max_filter_iteration,
                kernel_size=settings.filter_kernel_size)
        'pixel/frame->pixel/sec'
        u = u / settings.dt
        v = v / settings.dt
        'scales the results pixel-> meter'
        x, y, u, v = scaling.uniform(x,
                                     y,
                                     u,
                                     v,
                                     scaling_factor=settings.scaling_factor)
        'save to a file'
        save(x,
             y,
             u,
             v,
             sig2noise_ratio,
             mask,
             os.path.join(save_path, 'field_A%03d.txt' % counter),
             delimiter='\t')
        'some messages to check if it is still alive'

        'some other stuff that one might want to use'
        if settings.show_plot == True or settings.save_plot == True:
            plt.close('all')
            plt.ioff()
            Name = os.path.join(save_path, 'Image_A%03d.png' % counter)
            display_vector_field(os.path.join(save_path,
                                              'field_A%03d.txt' % counter),
                                 scale=settings.scale_plot)
            if settings.save_plot == True:
                plt.savefig(Name)
            if settings.show_plot == True:
                plt.show()

        print('Image Pair ' + str(counter + 1))
示例#7
0
    def func(args):
        file_a, file_b, counter = args
        # read the iamges
        frame_a = tools.imread(os.path.join(settings.filepath_images, file_a))
        frame_b = tools.imread(os.path.join(settings.filepath_images, file_b))
        if counter == settings.fall_start:
            settings.ROI[1] = frame_a.shape[0]
        """Here we check if the interface has reached the top of the roi yet
        by comparing it to the index in the observation_periods file. If it has
        not reached the roi yet we skip this part, if it did then we shift the
        roi for each pair after the initial one """
        if counter >= settings.roi_shift_start:
            # set the roi to the image height for the first frame
            # if counter == settings.roi_shift_start :
            #     settings.current_pos = 0
            # shift the roi for each pair (this is not done for the first one)
            settings.ROI[0] = int(settings.current_pos)

        # crop to roi
        if settings.ROI == 'full':
            frame_a = frame_a
            frame_b = frame_b
        else:
            frame_a = frame_a[settings.ROI[0]:settings.ROI[1],
                              settings.ROI[2]:settings.ROI[3]]
            frame_b = frame_b[settings.ROI[0]:settings.ROI[1],
                              settings.ROI[2]:settings.ROI[3]]
        if settings.dynamic_masking_method == 'edge' or settings.dynamic_masking_method == 'intensity':
            frame_a = preprocess.dynamic_masking(
                frame_a,
                method=settings.dynamic_masking_method,
                filter_size=settings.dynamic_masking_filter_size,
                threshold=settings.dynamic_masking_threshold)
            frame_b = preprocess.dynamic_masking(
                frame_b,
                method=settings.dynamic_masking_method,
                filter_size=settings.dynamic_masking_filter_size,
                threshold=settings.dynamic_masking_threshold)

#%%
        """ Here we do the first pass of the piv interrogation """
        x, y, u, v, sig2noise_ratio = first_pass(
            frame_a,
            frame_b,
            settings.window_width[0],
            settings.window_height[0],
            settings.overlap_width[0],
            settings.overlap_height[0],
            settings.iterations,
            correlation_method=settings.correlation_method,
            subpixel_method=settings.subpixel_method,
            do_sig2noise=settings.extract_sig2noise,
            sig2noise_method=settings.sig2noise_method,
            sig2noise_mask=settings.sig2noise_mask,
        )
        mask = np.full_like(x, False)
        if settings.validation_first_pass == True:
            u, v, mask_g = validation.global_val(u, v, settings.MinMax_U_disp,
                                                 settings.MinMax_V_disp)
            u, v, mask_s = validation.global_std(
                u, v, std_threshold=settings.std_threshold)
            u, v, mask_m = validation.local_median_val(
                u,
                v,
                u_threshold=settings.median_threshold,
                v_threshold=settings.median_threshold,
                size=settings.median_size)
            if settings.extract_sig2noise == True and settings.iterations == 1 and settings.do_sig2noise_validation == True:
                u, v, mask_s2n = validation.sig2noise_val(
                    u,
                    v,
                    sig2noise_ratio,
                    threshold=settings.sig2noise_threshold)
                mask = mask + mask_g + mask_m + mask_s + mask_s2n
            else:
                mask = mask + mask_g + mask_m + mask_s
        'filter to replace the values that where marked by the validation'
        if settings.iterations > 1:
            u, v = filters.replace_outliers(
                u,
                v,
                method=settings.filter_method,
                max_iter=settings.max_filter_iteration,
                kernel_size=settings.filter_kernel_size)
            'adding masks to add the effect of all the validations'
            if settings.smoothn == True:
                u, dummy_u1, dummy_u2, dummy_u3 = smoothn.smoothn(
                    u, s=settings.smoothn_p)
                v, dummy_v1, dummy_v2, dummy_v3 = smoothn.smoothn(
                    v, s=settings.smoothn_p)
        elif settings.iterations == 1 and settings.replace_vectors == True:
            u, v = filters.replace_outliers(
                u,
                v,
                method=settings.filter_method,
                max_iter=settings.max_filter_iteration,
                kernel_size=settings.filter_kernel_size)
            'adding masks to add the effect of all the validations'
            if settings.smoothn == True:
                u, v = filters.replace_outliers(
                    u,
                    v,
                    method=settings.filter_method,
                    max_iter=settings.max_filter_iteration,
                    kernel_size=settings.filter_kernel_size)
                u, dummy_u1, dummy_u2, dummy_u3 = smoothn.smoothn(
                    u, s=settings.smoothn_p)
                v, dummy_v1, dummy_v2, dummy_v3 = smoothn.smoothn(
                    v, s=settings.smoothn_p)

#%%
        i = 1
        """ Do the multipass until the maximum iterations are reached """
        for i in range(2, settings.iterations + 1):
            x, y, u, v, sig2noise_ratio, mask = multipass_img_deform(
                frame_a,
                frame_b,
                settings.window_width[i - 1],
                settings.window_height[i - 1],
                settings.overlap_width[i - 1],
                settings.overlap_height[i - 1],
                settings.iterations,
                i,
                x,
                y,
                u,
                v,
                correlation_method=settings.correlation_method,
                subpixel_method=settings.subpixel_method,
                do_sig2noise=settings.extract_sig2noise,
                sig2noise_method=settings.sig2noise_method,
                sig2noise_mask=settings.sig2noise_mask,
                MinMaxU=settings.MinMax_U_disp,
                MinMaxV=settings.MinMax_V_disp,
                std_threshold=settings.std_threshold,
                median_threshold=settings.median_threshold,
                median_size=settings.median_size,
                filter_method=settings.filter_method,
                max_filter_iteration=settings.max_filter_iteration,
                filter_kernel_size=settings.filter_kernel_size,
                interpolation_order=settings.interpolation_order)
            # smooth on each pass in case this is wanted
            if settings.smoothn == True:
                u, dummy_u1, dummy_u2, dummy_u3 = smoothn.smoothn(
                    u, s=settings.smoothn_p)
                v, dummy_v1, dummy_v2, dummy_v3 = smoothn.smoothn(
                    v, s=settings.smoothn_p)

        # extract the sig2noise ratio in case it is desired and replace the vectors
        if settings.extract_sig2noise == True and i == settings.iterations and settings.iterations != 1 and settings.do_sig2noise_validation == True:
            u, v, mask_s2n = validation_patch.sig2noise_val(
                u,
                v,
                sig2noise_ratio,
                threshold_low=settings.sig2noise_threshold)
            mask = mask + mask_s2n
        if settings.replace_vectors == True:
            u, v = filters.replace_outliers(
                u,
                v,
                method=settings.filter_method,
                max_iter=settings.max_filter_iteration,
                kernel_size=settings.filter_kernel_size)
        if counter >= settings.roi_shift_start:
            settings.current_pos = settings.current_pos - calc_disp(
                x, v, frame_b.shape[1])
            if ((settings.ROI[1] - settings.current_pos) < 300):
                return settings.current_pos, True
        # scale the result timewise and lengthwise
        u = u / settings.dt
        v = v / settings.dt
        x, y, u, v = scaling.uniform(x,
                                     y,
                                     u,
                                     v,
                                     scaling_factor=settings.scaling_factor)
        # save the result
        save(x,
             y,
             u,
             v,
             sig2noise_ratio,
             mask,
             os.path.join(save_path_txts, 'field_%06d.txt' % (counter)),
             delimiter='\t')
        # disable the grid in the rcParams file
        plt.rcParams['axes.grid'] = False
        # show and save the plot if it is desired
        if settings.show_plot == True or settings.save_plot == True:
            plt.ioff()
            Name = os.path.join(save_path_images, 'Image_%06d.png' % (counter))
            display_vector_field(os.path.join(save_path_txts,
                                              'field_%06d.txt' % (counter)),
                                 scale=settings.scale_plot)
            if settings.save_plot == True:
                plt.savefig(Name, dpi=100)
            if settings.show_plot == True:
                plt.show()
            plt.close('all')
        print('Image Pair ' + str(counter) + ' of ' +
              settings.save_folder_suffix)
        if settings.current_pos == np.nan:
            return settings.current_pos, True
        return settings.current_pos, False
# In[35]:


quick_quiver()


# In[36]:


# Smoothing after the first pass
settings.smoothn=True #Enables smoothing of the displacemenet field
settings.smoothn_p=0.5 # This is a smoothing parameter

u, dummy_u1, dummy_u2, dummy_u3 = smoothn.smoothn(
    u, s=settings.smoothn_p
)
v, dummy_v1, dummy_v2, dummy_v3 = smoothn.smoothn(
    v, s=settings.smoothn_p
)

# mask the velocity maps
tmp = np.zeros_like(x,dtype=bool)
tmp.flat[xymask] = 1

u = np.ma.masked_array(u, mask = tmp)
v = np.ma.masked_array(v, mask = tmp)


# In[37]:
 def smoothn(u, s):
     s = s
     u, _, _, _ = piv_smt.smoothn(u, s=s, isrobust=self.p['robust'])
     return (u)
示例#10
0
 def vacf(self,
          mode="direct",
          smooth_method="gaussian",
          smooth_window=3,
          xlim=None,
          plot=False):
     """Compute averaged vacf from PIV data.
     This is a wrapper of function autocorr1d(), adding the averaging over all the velocity spots.
     Args:
     mode -- the averaging method, can be "direct" or "weighted".
             "weighted" will use mean velocity as the averaging weight, whereas "direct" uses 1.
     smooth_window -- window size for gaussian smoothing in time
     xlim -- xlim for plotting the VACF, does not affect the return value
     Returns:
     corrData -- DataFrame of (t, corrx, corry)
     Edit:
     Mar 23, 2022 -- add smoothn smoothing option
     """
     # rearrange vstack from (f, h, w) to (f, h*w), then transpose
     corr_components = []
     for name, stack in zip(["corrx", "corry"], self.stack):
         stack_r = stack.reshape((stack.shape[0], -1)).T
         stack_r = stack_r[~np.isnan(stack_r).any(axis=1)]
         if smooth_method == "gaussian":
             stack_r = scipy.ndimage.gaussian_filter(
                 stack_r, (0, smooth_window / 4))
         elif smooth_method == "smoothn":
             stack_r = smoothn(stack_r, axis=1)[0]
         # compute autocorrelation
         corr_list = []
         weight = 1
         normalizer = 0
         for x in stack_r:
             if np.isnan(
                     x[0]
             ) == False:  # masked out part has velocity as nan, which cannot be used for correlation computation
                 if mode == "weighted":
                     weight = abs(x).mean()
                 corr = autocorr1d(x) * weight
                 if np.isnan(corr.sum()) == False:
                     normalizer += weight
                     corr_list.append(corr)
         corr_mean = np.nansum(np.stack(corr_list, axis=0),
                               axis=0) / normalizer
         corr_components.append(
             pd.DataFrame({
                 "c": corr_mean,
                 "t": np.arange(len(corr_mean)) * self.dt
             }).set_index("t").rename(columns={"c": name}))
     ac = pd.concat(corr_components, axis=1)
     # plot autocorrelation functions
     if plot == True:
         fig, ax = plt.subplots(figsize=(3.5, 3), dpi=100)
         ax.plot(ac.index, ac.corrx, label="$C_x$")
         ax.plot(ac.index, ac.corry, label="$C_y$")
         ax.plot(ac.index, ac.mean(axis=1), label="mean", color="black")
         ax.set_xlabel("time (s)")
         ax.set_ylabel("VACF")
         ax.legend(frameon=False)
         ax.set_xlim([0, ac.index.max()])
         if xlim is not None:
             ax.set_xlim(xlim)
     return ac