示例#1
0
def sample_background_model(
        hdf5, branch_key, tom, seed, filter_idx, min_mag, npd, hdd,
        upper_seismogenic_depth, lower_seismogenic_depth, msr=WC1994(),
        aspect=1.5, trt=DEFAULT_TRT):
    """
    Generates a rupture set from a sample of the background model

    :param branch_key:
        Key to indicate the branch for selecting the background model
    :param tom:
        Temporal occurrence model as instance of :class:
        openquake.hazardlib.tom.TOM
    :param seed:
        Random seed to use in the call to tom.sample_number_of_occurrences
    :param filter_idx:
        Sites for consideration (can be None!)
    :param float min_mag:
        Minimim magnitude for consideration of background sources
    :param npd:
        Nodal plane distribution as instance of :class:
        openquake.hazardlib.pmf.PMF
    :param hdd:
        Hypocentral depth distribution as instance of :class:
        openquake.hazardlib.pmf.PMF
    :param float aspect:
        Aspect ratio
    :param float upper_seismogenic_depth:
        Upper seismogenic depth (km)
    :param float lower_seismogenic_depth:
        Lower seismogenic depth (km)
    :param msr:
        Magnitude scaling relation
    :param float integration_distance:
        Maximum distance from rupture to site for consideration
    """
    bg_magnitudes = hdf5["/".join(["Grid", branch_key, "Magnitude"])].value
    # Select magnitudes above the minimum magnitudes
    mag_idx = bg_magnitudes >= min_mag
    mags = bg_magnitudes[mag_idx]
    rates = hdf5["/".join(["Grid", branch_key, "RateArray"])][filter_idx, :]
    rates = rates[:, mag_idx]
    valid_locs = hdf5["Grid/Locations"][filter_idx, :]
    # Sample remaining rates
    sampler = tom.sample_number_of_occurrences(rates, seed)
    background_ruptures = []
    background_n_occ = []
    for i, mag in enumerate(mags):
        rate_idx = numpy.where(sampler[:, i])[0]
        rate_cnt = sampler[rate_idx, i]
        occurrence = rates[rate_idx, i]
        locations = valid_locs[rate_idx, :]
        ruptures = generate_background_ruptures(
            tom, locations, occurrence,
            mag, npd, hdd, upper_seismogenic_depth,
            lower_seismogenic_depth, msr, aspect, trt)
        background_ruptures.extend(ruptures)
        background_n_occ.extend(rate_cnt.tolist())
    return background_ruptures, background_n_occ
def sample_background_model(
        hdf5, branch_key, tom, seed, filter_idx, min_mag, npd, hdd,
        upper_seismogenic_depth, lower_seismogenic_depth, msr=WC1994(),
        aspect=1.5, trt=DEFAULT_TRT):
    """
    Generates a rupture set from a sample of the background model

    :param branch_key:
        Key to indicate the branch for selecting the background model
    :param tom:
        Temporal occurrence model as instance of :class:
        openquake.hazardlib.tom.TOM
    :param seed:
        Random seed to use in the call to tom.sample_number_of_occurrences
    :param filter_idx:
        Sites for consideration (can be None!)
    :param float min_mag:
        Minimim magnitude for consideration of background sources
    :param npd:
        Nodal plane distribution as instance of :class:
        openquake.hazardlib.pmf.PMF
    :param hdd:
        Hypocentral depth distribution as instance of :class:
        openquake.hazardlib.pmf.PMF
    :param float aspect:
        Aspect ratio
    :param float upper_seismogenic_depth:
        Upper seismogenic depth (km)
    :param float lower_seismogenic_depth:
        Lower seismogenic depth (km)
    :param msr:
        Magnitude scaling relation
    :param float integration_distance:
        Maximum distance from rupture to site for consideration
    """
    bg_magnitudes = hdf5["/".join(["Grid", branch_key, "Magnitude"])][()]
    # Select magnitudes above the minimum magnitudes
    mag_idx = bg_magnitudes >= min_mag
    mags = bg_magnitudes[mag_idx]
    rates = hdf5["/".join(["Grid", branch_key, "RateArray"])][filter_idx, :]
    rates = rates[:, mag_idx]
    valid_locs = hdf5["Grid/Locations"][filter_idx, :]
    # Sample remaining rates
    sampler = tom.sample_number_of_occurrences(rates, seed)
    background_ruptures = []
    background_n_occ = []
    for i, mag in enumerate(mags):
        rate_idx = numpy.where(sampler[:, i])[0]
        rate_cnt = sampler[rate_idx, i]
        occurrence = rates[rate_idx, i]
        locations = valid_locs[rate_idx, :]
        ruptures = generate_background_ruptures(
            tom, locations, occurrence,
            mag, npd, hdd, upper_seismogenic_depth,
            lower_seismogenic_depth, msr, aspect, trt)
        background_ruptures.extend(ruptures)
        background_n_occ.extend(rate_cnt.tolist())
    return background_ruptures, background_n_occ