示例#1
0
def export_damage_taxon(ekey, dstore):
    loss_types = dstore.get_attr('composite_risk_model', 'loss_types')
    damage_states = dstore.get_attr('composite_risk_model', 'damage_states')
    rlzs = dstore['rlzs_assoc'].realizations
    dmg_by_taxon = dstore['dmg_by_taxon']  # shape (T, L, R)
    taxonomies = dstore['assetcol/taxonomies']
    dmg_states = [DmgState(s, i) for i, s in enumerate(damage_states)]
    D = len(dmg_states)
    T, R = dmg_by_taxon.shape
    L = len(loss_types)
    fnames = []

    for l, r in itertools.product(range(L), range(R)):
        lt = loss_types[l]
        rlz = rlzs[r]
        suffix = '' if L == 1 and R == 1 else '-gsimltp_%s_%s' % (rlz.uid, lt)

        dd_taxo = []
        for t in range(T):
            dist = dmg_by_taxon[t, r][lt]
            for ds in range(D):
                dd_taxo.append(
                    DmgDistPerTaxonomy(taxonomies[t], dmg_states[ds],
                                       dist['mean'][ds], dist['stddev'][ds]))

        f = export_dmg_xml(('dmg_dist_per_taxonomy', 'xml'), dstore,
                           dmg_states, dd_taxo, suffix)
        fnames.extend(sum(f.values(), []))
    return sorted(fnames)
示例#2
0
def export_damage_total(ekey, dstore):
    loss_types = dstore.get_attr('composite_risk_model', 'loss_types')
    damage_states = dstore.get_attr('composite_risk_model', 'damage_states')
    rlzs = dstore['rlzs_assoc'].realizations
    dmg_total = dstore['dmg_total']
    R, = dmg_total.shape
    L = len(loss_types)
    dmg_states = [DmgState(s, i) for i, s in enumerate(damage_states)]
    D = len(dmg_states)
    fnames = []
    for l, r in itertools.product(range(L), range(R)):
        lt = loss_types[l]
        rlz = rlzs[r]
        suffix = '' if L == 1 and R == 1 else '-gsimltp_%s_%s' % (rlz.uid, lt)

        dd_total = []
        for ds in range(D):
            dist = dmg_total[r][lt]
            dd_total.append(
                DmgDistTotal(dmg_states[ds], dist['mean'][ds],
                             dist['stddev'][ds]))

        f = export_dmg_xml(('dmg_dist_total', 'xml'), dstore, dmg_states,
                           dd_total, suffix)
        fnames.extend(sum(f.values(), []))
    return sorted(fnames)
示例#3
0
def export_damage_taxon(ekey, dstore):
    riskmodel = dstore['riskmodel']
    rlzs = dstore['rlzs_assoc'].realizations
    dmg_by_taxon = dstore['dmg_by_taxon']  # shape (T, L, R)
    taxonomies = dstore['taxonomies']
    dmg_states = [
        DmgState(s, i) for i, s in enumerate(riskmodel.damage_states)
    ]
    T, L, R = dmg_by_taxon.shape
    fnames = []

    for l, r in itertools.product(range(L), range(R)):
        lt = riskmodel.loss_types[l]
        rlz = rlzs[r]
        suffix = '' if L == 1 and R == 1 else '-gsimltp_%s_%s' % (rlz.uid, lt)

        dd_taxo = []
        for t in range(T):
            dist = dmg_by_taxon[t, l, r]
            for dmg_state in dmg_states:
                ds = dmg_state.dmg_state
                dd_taxo.append(
                    DmgDistPerTaxonomy(taxonomies[t], dmg_state,
                                       dist['mean'][ds], dist['stddev'][ds]))

        f = export_dmg_xml(('dmg_dist_per_taxonomy', 'xml'), dstore.export_dir,
                           dmg_states, dd_taxo, suffix)
        fnames.extend(sum(f.values(), []))
    return sorted(fnames)
示例#4
0
def export_damage_total(ekey, dstore):
    riskmodel = dstore['riskmodel']
    rlzs = dstore['rlzs_assoc'].realizations
    dmg_total = dstore['dmg_total']
    L, R = dmg_total.shape
    dmg_states = [
        DmgState(s, i) for i, s in enumerate(riskmodel.damage_states)
    ]
    fnames = []
    for l, r in itertools.product(range(L), range(R)):
        lt = riskmodel.loss_types[l]
        rlz = rlzs[r]
        suffix = '' if L == 1 and R == 1 else '-gsimltp_%s_%s' % (rlz.uid, lt)

        dd_total = []
        for dmg_state in dmg_states:
            dist = dmg_total[l, r]
            ds = dmg_state.dmg_state
            dd_total.append(
                DmgDistTotal(dmg_state, dist['mean'][ds], dist['stddev'][ds]))

        f = export_dmg_xml(('dmg_dist_total', 'xml'), dstore.export_dir,
                           dmg_states, dd_total, suffix)
        fnames.extend(sum(f.values(), []))
    return sorted(fnames)
示例#5
0
def export_damage(ekey, dstore):
    """
    :param ekey: export key, i.e. a pair (datastore key, fmt)
    :param dstore: datastore object
    """
    oqparam = dstore['oqparam']
    riskmodel = dstore['riskmodel']
    rlzs = dstore['rlzs_assoc'].realizations
    damages_by_key = dstore['damages_by_key']
    assetcol = dstore['assetcol']
    sitemesh = dstore['sitemesh']
    assetno = dict((ref, i) for i, ref in enumerate(assetcol['asset_ref']))
    dmg_states = [
        DmgState(s, i) for i, s in enumerate(riskmodel.damage_states)
    ]
    fnames = []
    for i in sorted(damages_by_key):
        rlz = rlzs[i]
        result = damages_by_key[i]
        dd_taxo = []
        dd_asset = []
        shape = oqparam.number_of_ground_motion_fields, len(dmg_states)
        totals = numpy.zeros(shape)  # R x D matrix
        for (key_type, key), values in result.items():
            if key_type == 'taxonomy':
                # values are fractions, R x D matrix
                totals += values
                means, stds = scientific.mean_std(values)
                for dmg_state, mean, std in zip(dmg_states, means, stds):
                    dd_taxo.append(
                        DmgDistPerTaxonomy(key, dmg_state, mean, std))
            elif key_type == 'asset':
                means, stddevs = values
                point = sitemesh[assetcol[assetno[key]]['site_id']]
                site = Site(point['lon'], point['lat'])
                for dmg_state, mean, std in zip(dmg_states, means, stddevs):
                    dd_asset.append(
                        DmgDistPerAsset(ExposureData(key, site), dmg_state,
                                        mean, std))
        dd_total = []
        for dmg_state, total in zip(dmg_states, totals.T):
            mean, std = scientific.mean_std(total)
            dd_total.append(DmgDistTotal(dmg_state, mean, std))

        suffix = '' if rlz.uid == '*' else '-gsimltp_%s' % rlz.uid
        f1 = export_dmg_xml(('dmg_dist_per_asset', 'xml'), oqparam.export_dir,
                            dmg_states, dd_asset, suffix)
        f2 = export_dmg_xml(('dmg_dist_per_taxonomy', 'xml'),
                            oqparam.export_dir, dmg_states, dd_taxo, suffix)
        f3 = export_dmg_xml(('dmg_dist_total', 'xml'), oqparam.export_dir,
                            dmg_states, dd_total, suffix)
        max_damage = dmg_states[-1]
        # the collapse map is extracted from the damage distribution per asset
        # (dda) by taking the value corresponding to the maximum damage
        collapse_map = [dda for dda in dd_asset if dda.dmg_state == max_damage]
        f4 = export_dmg_xml(('collapse_map', 'xml'), oqparam.export_dir,
                            dmg_states, collapse_map, suffix)
        fnames.extend(sum((f1 + f2 + f3 + f4).values(), []))
    return sorted(fnames)
示例#6
0
def export_classical_damage_csv(ekey, dstore):
    damages_by_rlz = dstore['damages_by_rlz']
    rlzs = dstore['rlzs_assoc'].realizations
    damage_states = dstore['riskmodel'].damage_states
    dmg_states = [DmgState(s, i) for i, s in enumerate(damage_states)]
    fnames = []
    for rlz in rlzs:
        damages = damages_by_rlz[rlz.ordinal]
        fname = 'damage_%d.csv' % rlz.ordinal
        fnames.append(
            _export_classical_damage_csv(dstore, fname, dmg_states, damages))
    return fnames
示例#7
0
def export_classical_damage_csv(ekey, dstore):
    """
    :param ekey: export key, i.e. a pair (datastore key, fmt)
    :param dstore: datastore object
    """
    damages_by_rlz = dstore['damages_by_rlz']
    rlzs = dstore['rlzs_assoc'].realizations
    damage_states = dstore['riskmodel'].damage_states
    dmg_states = [DmgState(s, i) for i, s in enumerate(damage_states)]
    fnames = []
    for rlz in rlzs:
        damages = damages_by_rlz[rlz.ordinal]
        fname = 'damage_%d.csv' % rlz.ordinal
        fnames.append(
            _export_classical_damage_csv(dstore.export_dir, fname, dmg_states,
                                         damages))
    return fnames
示例#8
0
def export_damage(ekey, dstore):
    riskmodel = dstore['riskmodel']
    rlzs = dstore['rlzs_assoc'].realizations
    dmg_by_asset = dstore['dmg_by_asset']  # shape (N, L, R)
    assetcol = dstore['assetcol']
    sitemesh = dstore['sitemesh']
    dmg_states = [
        DmgState(s, i) for i, s in enumerate(riskmodel.damage_states)
    ]
    D = len(dmg_states)
    N, R = dmg_by_asset.shape
    L = len(riskmodel.loss_types)
    fnames = []

    for l, r in itertools.product(range(L), range(R)):
        lt = riskmodel.loss_types[l]
        rlz = rlzs[r]
        suffix = '' if L == 1 and R == 1 else '-gsimltp_%s_%s' % (rlz.uid, lt)

        dd_asset = []
        for n in range(N):
            aref = assetcol[n]['asset_ref']
            dist = dmg_by_asset[n, r][lt]
            point = sitemesh[assetcol[n]['site_id']]
            site = Site(point['lon'], point['lat'])
            for ds in range(D):
                dd_asset.append(
                    DmgDistPerAsset(ExposureData(aref, site), dmg_states[ds],
                                    dist['mean'][ds], dist['stddev'][ds]))

        f1 = export_dmg_xml(('dmg_dist_per_asset', 'xml'), dstore, dmg_states,
                            dd_asset, suffix)
        max_damage = dmg_states[-1]
        # the collapse map is extracted from the damage distribution per asset
        # (dda) by taking the value corresponding to the maximum damage
        collapse_map = [dda for dda in dd_asset if dda.dmg_state == max_damage]
        f2 = export_dmg_xml(('collapse_map', 'xml'), dstore, dmg_states,
                            collapse_map, suffix)
        fnames.extend(sum((f1 + f2).values(), []))
    return sorted(fnames)
示例#9
0
def export_damage(ekey, dstore):
    loss_types = dstore.get_attr('composite_risk_model', 'loss_types')
    damage_states = dstore.get_attr('composite_risk_model', 'damage_states')
    rlzs = dstore['csm_info'].get_rlzs_assoc().realizations
    dmg_by_asset = dstore['dmg_by_asset']  # shape (N, L, R)
    assetcol = dstore['assetcol/array'].value
    aref = dstore['asset_refs'].value
    dmg_states = [DmgState(s, i) for i, s in enumerate(damage_states)]
    D = len(dmg_states)
    N, R = dmg_by_asset.shape
    L = len(loss_types)
    fnames = []

    for l, r in itertools.product(range(L), range(R)):
        lt = loss_types[l]
        rlz = rlzs[r]
        suffix = '' if L == 1 and R == 1 else '-gsimltp_%s_%s' % (rlz.uid, lt)

        dd_asset = []
        for n, ass in enumerate(assetcol):
            assref = aref[ass['idx']]
            dist = dmg_by_asset[n, r][lt]
            site = Site(ass['lon'], ass['lat'])
            for ds in range(D):
                dd_asset.append(
                    DmgDistPerAsset(ExposureData(assref, site), dmg_states[ds],
                                    dist['mean'][ds], dist['stddev'][ds]))

        f1 = export_dmg_xml(('dmg_dist_per_asset', 'xml'), dstore, dmg_states,
                            dd_asset, suffix)
        max_damage = dmg_states[-1]
        # the collapse map is extracted from the damage distribution per asset
        # (dda) by taking the value corresponding to the maximum damage
        collapse_map = [dda for dda in dd_asset if dda.dmg_state == max_damage]
        f2 = export_dmg_xml(('collapse_map', 'xml'), dstore, dmg_states,
                            collapse_map, suffix)
        fnames.extend(sum((f1 + f2).values(), []))
    return sorted(fnames)