raw_data['max_item'], name='Test') model = VisualCML(batch_size=batch_size, max_user=raw_data['max_user'], max_item=raw_data['max_item'], l2_reg=0.001, l2_reg_mlp=0.001, dropout_rate=0.5, dim_embed=50, item_f_source=raw_data['item_features'], dims=[1028, 128, 50], sess_config=sess_config, opt='Adam') sampler = PairwiseSampler(batch_size=batch_size, dataset=train_dataset, num_process=5) model_trainer = ImplicitModelTrainer(batch_size=batch_size, test_batch_size=test_batch_size, item_serving_size=item_serving_size, train_dataset=train_dataset, model=model, sampler=sampler) auc_evaluator = AUC() recall_evaluator = Recall(recall_at=[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]) model_trainer.train(num_itr=int(1e5), display_itr=display_itr, eval_datasets=[val_dataset, test_dataset], evaluators=[auc_evaluator, recall_evaluator],
max_user=max_users, max_item=max_items, name='Val') test_dataset = ImplicitDataset(raw_data=csv, max_user=max_users, max_item=max_items, name='Test') bpr_model = BPR(batch_size=1000, max_user=train_dataset.max_user(), max_item=train_dataset.max_item(), dim_embed=20, opt='Adam') print("before sampler") sampler = PairwiseSampler(batch_size=1000, dataset=train_dataset) print("after sampler") auc_evaluator = AUC() print("after evaluator") model_trainer = ImplicitModelTrainer(batch_size=1000, test_batch_size=100, train_dataset=train_dataset, model=bpr_model, sampler=sampler) print("after implicit") model_trainer.train(num_itr=10, display_itr=10, eval_datasets=[val_dataset, test_dataset],