def PushoverLcD(Nsteps): ControlNode = 4 ControlNodeDof = 1 du = 0.00001*m # Define time series # timeSeries('Constant', tag, '-factor', factor=1.0) op.timeSeries('Constant',1) op.timeSeries('Linear', 2) # define loads op.pattern('Plain',1 , 2) op.sp(ControlNode, ControlNodeDof, du) # Define Analysis Options # create SOE op.system("BandGeneral") # create DOF number op.numberer("Plain") # create constraint handler op.constraints("Transformation") # create integrator op.integrator("LoadControl", .1) # create algorithm op.algorithm("Newton") # create analysis object op.analysis("Static") # Create Test op.test('NormDispIncr', 1.*10**-8, 50) # Run Analysis op.record() ok = op.analyze(Nsteps) nn = 0
def analysis(P, steps, tol, max_iter): tsTag = 1 ops.timeSeries('Linear', tsTag) pattTag = 1 ops.pattern('Plain', pattTag, tsTag) ops.load(2, *P) ########################################################################## ops.constraints('Plain') ops.numberer('RCM') ops.system('BandGeneral') ops.test('NormUnbalance', tol, max_iter) ops.algorithm('Newton') temp = 1 / steps ops.integrator('LoadControl', temp) ops.analysis('Static') ops.analyze(steps) ########################################################################## opsplt.plot_model() ########################################################################## ops.wipe()
def analyse(self, num_incr): ''' Analyse the system. Args: num_incr: An integer number of load increments. return_node_disp: ''' ops.constraints('Transformation') ops.numberer('RCM') ops.system('BandGeneral') ops.test('NormUnbalance', 2e-8, num_incr) ops.algorithm('Newton') ops.integrator('LoadControl', 1 / num_incr) ops.record() ops.analysis('Static') ok = ops.analyze(num_incr) # Report analysis status if ok == 0: print("Analysis done.") else: print("Convergence issue.")
op.recorder('Node', '-file', 'Data-2c/DBase.out','-time', '-node', 1, '-dof', 1,2,3, 'disp') op.recorder('Node', '-file', 'Data-2c/RBase.out','-time', '-node', 1, '-dof', 1,2,3, 'reaction') #op.recorder('Drift', '-file', 'Data-2c/Drift.out','-time', '-node', 1, '-dof', 1,2,3, 'disp') op.recorder('Element', '-file', 'Data-2c/FCol.out','-time', '-ele', 1, 'globalForce') op.recorder('Element', '-file', 'Data-2c/ForceColSec1.out','-time', '-ele', 1, 'section', 1, 'force') #op.recorder('Element', '-file', 'Data-2c/DCol.out','-time', '-ele', 1, 'deformations') #defining gravity loads op.timeSeries('Linear', 1) op.pattern('Plain', 1, 1) op.load(2, 0.0, -PCol, 0.0) Tol = 1e-8 # convergence tolerance for test NstepGravity = 10 DGravity = 1/NstepGravity op.integrator('LoadControl', DGravity) # determine the next time step for an analysis op.numberer('Plain') # renumber dof's to minimize band-width (optimization), if you want to op.system('BandGeneral') # how to store and solve the system of equations in the analysis op.constraints('Plain') # how it handles boundary conditions op.test('NormDispIncr', Tol, 6) # determine if convergence has been achieved at the end of an iteration step op.algorithm('Newton') # use Newton's solution algorithm: updates tangent stiffness at every iteration op.analysis('Static') # define type of analysis static or transient op.analyze(NstepGravity) # apply gravity op.loadConst('-time', 0.0) #maintain constant gravity loads and reset time to zero #applying Dynamic Ground motion analysis GMdirection = 1 GMfile = 'BM68elc.acc' GMfact = 1.0
def get_inelastic_response(fb, asig, extra_time=0.0, xi=0.05, analysis_dt=0.001): """ Run seismic analysis of a nonlinear FrameBuilding :param fb: FrameBuilding object :param asig: AccSignal object :param extra_time: float, additional analysis time after end of ground motion :param xi: damping ratio :param analysis_dt: time step to perform the analysis :return: """ op.wipe() op.model('basic', '-ndm', 2, '-ndf', 3) # 2 dimensions, 3 dof per node q_floor = 10000. # kPa trib_width = fb.floor_length trib_mass_per_length = q_floor * trib_width / 9.8 # Establish nodes and set mass based on trib area # Nodes named as: C<column-number>-S<storey-number>, first column starts at C1-S0 = ground level left nd = OrderedDict() col_xs = np.cumsum(fb.bay_lengths) col_xs = np.insert(col_xs, 0, 0) n_cols = len(col_xs) sto_ys = fb.heights sto_ys = np.insert(sto_ys, 0, 0) for cc in range(1, n_cols + 1): for ss in range(fb.n_storeys + 1): n_i = cc * 100 + ss nd["C%i-S%i" % (cc, ss)] = n_i op.node(n_i, col_xs[cc - 1], sto_ys[ss]) if ss != 0: if cc == 1: node_mass = trib_mass_per_length * fb.bay_lengths[0] / 2 elif cc == n_cols: node_mass = trib_mass_per_length * fb.bay_lengths[-1] / 2 else: node_mass = trib_mass_per_length * (fb.bay_lengths[cc - 2] + fb.bay_lengths[cc - 1] / 2) op.mass(n_i, node_mass) # Set all nodes on a storey to have the same displacement for ss in range(0, fb.n_storeys + 1): for cc in range(1, n_cols + 1): op.equalDOF(nd["C%i-S%i" % (1, ss)], nd["C%i-S%i" % (cc, ss)], opc.X) # Fix all base nodes for cc in range(1, n_cols + 1): op.fix(nd["C%i-S%i" % (cc, 0)], opc.FIXED, opc.FIXED, opc.FIXED) # Coordinate transformation geo_tag = 1 trans_args = [] op.geomTransf("Linear", geo_tag, *[]) l_hinge = fb.bay_lengths[0] * 0.1 # Define material e_conc = 30.0e6 i_beams = 0.4 * fb.beam_widths * fb.beam_depths ** 3 / 12 i_columns = 0.5 * fb.column_widths * fb.column_depths ** 3 / 12 a_beams = fb.beam_widths * fb.beam_depths a_columns = fb.column_widths * fb.column_depths ei_beams = e_conc * i_beams ei_columns = e_conc * i_columns eps_yield = 300.0e6 / 200e9 phi_y_col = calc_yield_curvature(fb.column_depths, eps_yield) phi_y_beam = calc_yield_curvature(fb.beam_depths, eps_yield) # Define beams and columns md = OrderedDict() # material dict sd = OrderedDict() # section dict ed = OrderedDict() # element dict # Columns named as: C<column-number>-S<storey-number>, first column starts at C1-S0 = ground floor left # Beams named as: B<bay-number>-S<storey-number>, first beam starts at B1-S1 = first storey left (foundation at S0) for ss in range(fb.n_storeys): # set columns for cc in range(1, fb.n_cols + 1): ele_i = cc * 100 + ss md["C%i-S%i" % (cc, ss)] = ele_i sd["C%i-S%i" % (cc, ss)] = ele_i ed["C%i-S%i" % (cc, ss)] = ele_i mat_props = elastic_bilin(ei_columns[ss][cc - 1], 0.05 * ei_columns[ss][cc - 1], phi_y_col[ss][cc - 1]) #print(opc.ELASTIC_BILIN, ele_i, *mat_props) op.uniaxialMaterial(opc.ELASTIC_BILIN, ele_i, *mat_props) # op.uniaxialMaterial("Elastic", ele_i, ei_columns[ss][cc - 1]) node_numbers = [nd["C%i-S%i" % (cc, ss)], nd["C%i-S%i" % (cc, ss + 1)]] op.element(opc.ELASTIC_BEAM_COLUMN, ele_i, *node_numbers, a_columns[ss - 1][cc - 1], e_conc, i_columns[ss - 1][cc - 1], geo_tag ) # Set beams for bb in range(1, fb.n_bays + 1): ele_i = bb * 10000 + ss md["B%i-S%i" % (bb, ss)] = ele_i sd["B%i-S%i" % (bb, ss)] = ele_i ed["B%i-S%i" % (bb, ss)] = ele_i mat_props = elastic_bilin(ei_beams[ss][bb - 1], 0.05 * ei_beams[ss][bb - 1], phi_y_beam[ss][bb - 1]) op.uniaxialMaterial(opc.ELASTIC_BILIN, ele_i, *mat_props) # op.uniaxialMaterial("Elastic", ele_i, ei_beams[ss][bb - 1]) node_numbers = [nd["C%i-S%i" % (bb, ss + 1)], nd["C%i-S%i" % (bb + 1, ss + 1)]] print((opc.BEAM_WITH_HINGES, ele_i, *node_numbers, sd["B%i-S%i" % (bb, ss)], l_hinge, sd["B%i-S%i" % (bb, ss)], l_hinge, sd["B%i-S%i" % (bb, ss)], geo_tag )) # Old definition # op.element(opc.BEAM_WITH_HINGES, ele_i, # *[nd["C%i-S%i" % (bb, ss - 1)], nd["C%i-S%i" % (bb + 1, ss)]], # sd["B%i-S%i" % (bb, ss)], l_hinge, # sd["B%i-S%i" % (bb, ss)], l_hinge, # e_conc, # a_beams[ss - 1][bb - 1], # i_beams[ss - 1][bb - 1], geo_tag # ) # New definition # op.element(opc.BEAM_WITH_HINGES, ele_i, # *node_numbers, # sd["B%i-S%i" % (bb, ss)], l_hinge, # sd["B%i-S%i" % (bb, ss)], l_hinge, # sd["B%i-S%i" % (bb, ss)], geo_tag # TODO: make this elastic # # ) # Elastic definition op.element(opc.ELASTIC_BEAM_COLUMN, ele_i, *node_numbers, a_beams[ss - 1][bb - 1], e_conc, i_beams[ss - 1][bb - 1], geo_tag ) # Define the dynamic analysis load_tag_dynamic = 1 pattern_tag_dynamic = 1 values = list(-1 * asig.values) # should be negative op.timeSeries('Path', load_tag_dynamic, '-dt', asig.dt, '-values', *values) op.pattern('UniformExcitation', pattern_tag_dynamic, opc.X, '-accel', load_tag_dynamic) # set damping based on first eigen mode angular_freq2 = op.eigen('-fullGenLapack', 1) if hasattr(angular_freq2, '__len__'): angular_freq2 = angular_freq2[0] angular_freq = angular_freq2 ** 0.5 if isinstance(angular_freq, complex): raise ValueError("Angular frequency is complex, issue with stiffness or mass") alpha_m = 0.0 beta_k = 2 * xi / angular_freq beta_k_comm = 0.0 beta_k_init = 0.0 period = angular_freq / 2 / np.pi print("period: ", period) op.rayleigh(alpha_m, beta_k, beta_k_init, beta_k_comm) # Run the dynamic analysis op.wipeAnalysis() op.algorithm('Newton') op.system('SparseGeneral') op.numberer('RCM') op.constraints('Transformation') op.integrator('Newmark', 0.5, 0.25) op.analysis('Transient') #op.test("NormDispIncr", 1.0e-1, 2, 0) tol = 1.0e-10 iter = 10 op.test('EnergyIncr', tol, iter, 0, 2) # TODO: make this test work analysis_time = (len(values) - 1) * asig.dt + extra_time outputs = { "time": [], "rel_disp": [], "rel_accel": [], "rel_vel": [], "force": [] } print("Analysis starting") while op.getTime() < analysis_time: curr_time = op.getTime() op.analyze(1, analysis_dt) outputs["time"].append(curr_time) outputs["rel_disp"].append(op.nodeDisp(nd["C%i-S%i" % (1, fb.n_storeys)], opc.X)) outputs["rel_vel"].append(op.nodeVel(nd["C%i-S%i" % (1, fb.n_storeys)], opc.X)) outputs["rel_accel"].append(op.nodeAccel(nd["C%i-S%i" % (1, fb.n_storeys)], opc.X)) op.reactions() react = 0 for cc in range(1, fb.n_cols): react += -op.nodeReaction(nd["C%i-S%i" % (cc, 0)], opc.X) outputs["force"].append(react) # Should be negative since diff node op.wipe() for item in outputs: outputs[item] = np.array(outputs[item]) return outputs
def get_pile_m(pile_z0=0, pile_z1=-30, pile_d=2, m0=7.5, pile_f=0, pile_m=0): pile_h = pile_z0 - pile_z1 pile_a = np.pi * (pile_d / 2) ** 2 pile_i = np.pi * pile_d ** 4 / 64 pile_b1 = 0.9 * (1.5 + 0.5 / pile_d) * 1 * pile_d # 建立模型 ops.wipe() ops.model('basic', '-ndm', 2, '-ndf', 3) # 建立节点 node_z = np.linspace(pile_z0, pile_z1, elem_num + 1) for i, j in enumerate(node_z): ops.node(i + 1, 0, j) ops.node(i + 201, 0, j) # 约束 for i in range(len(node_z)): ops.fix(i + 1, 0, 1, 0) ops.fix(i + 201, 1, 1, 1) # 建立材料 ops.uniaxialMaterial('Elastic', 1, 3e4) for i in range(len(node_z)): pile_depth = i * (pile_h / elem_num) pile_depth_nominal = 10 if pile_depth <= 10 else pile_depth soil_k = m0 * pile_depth_nominal * pile_b1 * (pile_h / elem_num) if i == 0: ops.uniaxialMaterial('Elastic', 100 + i, soil_k / 2) continue ops.uniaxialMaterial('Elastic', 100 + i, soil_k) # 装配 ops.geomTransf('Linear', 1) # 建立单元 for i in range(elem_num): ops.element('elasticBeamColumn', i + 1, i + 1, i + 2, pile_a, 3e10, pile_i, 1) # 建立弹簧 for i in range(len(node_z)): ops.element('zeroLength', i + 201, i + 1, i + 201, '-mat', 100 + i, '-dir', 1) ops.timeSeries('Linear', 1) ops.pattern('Plain', 1, 1) ops.load(1, pile_f, 0, pile_m) ops.system('BandGeneral') ops.numberer('Plain') ops.constraints('Plain') ops.integrator('LoadControl', 0.01) ops.test('EnergyIncr', 1e-6, 200) ops.algorithm('Newton') ops.analysis('Static') ops.analyze(100) # 绘制位移图 node_disp = [] for i in range(101): node_disp.append(ops.nodeDisp(i + 1)) node_disp = np.array(node_disp) * 1000 plt.figure() plt.subplot(121) for i, j in enumerate(node_z): if abs(node_disp[:, 0][i]) > max(abs(node_disp[:, 0])) / 50: if i == 0: plt.plot([0, node_disp[:, 0][i]], [j, j], linewidth=1.5, color='grey') else: plt.plot([0, node_disp[:, 0][i]], [j, j], linewidth=0.7, color='grey') if abs(node_disp[:, 0][i]) == max(abs(node_disp[:, 0])): plt.annotate(f'{node_disp[:, 0][i]:.1f} mm', xy=(node_disp[:, 0][i], j), xytext=(0.3, 0.5), textcoords='axes fraction', bbox=dict(boxstyle="round", fc="0.8"), arrowprops=dict(arrowstyle='->', connectionstyle="arc3,rad=-0.3")) plt.plot([0, 0], [node_z[0], node_z[-1]], linewidth=1.5, color='dimgray') plt.plot(node_disp[:, 0], node_z, linewidth=1.5, color='midnightblue') plt.xlabel('Displacement(mm)') plt.ylabel('Pile Depth(m)') # 绘制弯矩图 elem_m = [] for i in range(100): elem_m.append(ops.eleForce(i + 1)) elem_m = np.array(elem_m) / 1000 plt.subplot(122) for i, j in enumerate(node_z[:-1]): if abs(elem_m[:, 2][i]) > max(abs(elem_m[:, 2])) / 50: if i == 0: plt.plot([0, elem_m[:, 2][i]], [j, j], linewidth=1.5, color='grey') else: plt.plot([0, elem_m[:, 2][i]], [j, j], linewidth=0.7, color='grey') if abs(elem_m[:, 2][i]) == max(abs(elem_m[:, 2])): plt.annotate(f'{elem_m[:, 2][i]:.1f} kN.m', xy=(elem_m[:, 2][i], j), xytext=(0.5, 0.5), textcoords='axes fraction', bbox=dict(boxstyle="round", fc="0.8"), arrowprops=dict(arrowstyle='->', connectionstyle="arc3,rad=0.3")) plt.plot([0, 0], [node_z[0], node_z[-1]], linewidth=1.5, color='dimgray') plt.plot(elem_m[:, 2], node_z[:-1], linewidth=1.5, color='brown') plt.xlabel('Moment(kN.m)') # plt.ylabel('Pile Depth(m)') plt.show() return abs(max(elem_m[:, 2]))
def ModalAnalysis3D(numEigen): """ |-----------------------------------------------------------------------| | | | Modal Analysis of 3D systems | | | | Author: Volkan Ozsarac | | Affiliation: University School for Advanced Studies IUSS Pavia | | Earthquake Engineering PhD Candidate | | | |-----------------------------------------------------------------------| """ import numpy as np import openseespy.opensees as op import time import sys print('Extracting the mass matrix, ignore the following warnings...\n') op.wipeAnalysis() op.system('FullGeneral') op.analysis('Transient') # Extract the Mass Matrix op.integrator('GimmeMCK',1.0,0.0,0.0) op.analyze(1,0.0) time.sleep(0.5) # Number of equations in the model N = op.systemSize() # Has to be done after analyze Mmatrix = op.printA('-ret') # Or use op.printA('-file','M.out') Mmatrix = np.array(Mmatrix) # Convert the list to an array Mmatrix.shape = (N,N) # Make the array an NxN matrix print('\nExtracted the mass matrix, ignore the previous warnings...') # Rerrange the mass matrix in accordance with nodelist order from getNodeTags() DOFs = [] # These are the idx of all the DOFs used in the extract mass matrix, order is rearranged used = {} # Save here the nodes and their associated dofs used in global mass matrix lx = np.zeros([N,1]) # influence vector (x) ly = np.zeros([N,1]) # influence vector (y) lz = np.zeros([N,1]) # influence vector (z) lrx = np.zeros([N,1]) # influence vector (rx) lry = np.zeros([N,1]) # influence vector (ry) lrz = np.zeros([N,1]) # influence vector (rz) idx = 0 # index NDF = 6 # NDF is number of DOFs/node for node in op.getNodeTags(): used[node] = [] for j in range(NDF): temp = op.nodeDOFs(node)[j] if temp not in DOFs and temp >=0: DOFs.append(op.nodeDOFs(node)[j]) used[node].append(j+1) if j == 0: lx[idx,0] = 1 if j == 1: ly[idx,0] = 1 if j == 2: lz[idx,0] = 1 if j == 3: lrx[idx,0] = 1 if j == 4: lry[idx,0] = 1 if j == 5: lrz[idx,0] = 1 idx += 1 Mmatrix = Mmatrix[DOFs,:][:,DOFs] op.wipeAnalysis() listSolvers = ['-genBandArpack','-fullGenLapack','-symmBandLapack'] ok = 1 for s in listSolvers: print("Using %s as solver..." % s[1:]) try: eigenValues = op.eigen(s,numEigen) catchOK = 0 ok = 0 except: catchOK = 1 if catchOK==0: for i in range(numEigen): if eigenValues[i] < 0: ok = 1 if ok==0: print('Eigenvalue analysis is completed.') break if ok!=0: print("Error on Modal Analysis...") sys.exit() else: Lamda = np.asarray(eigenValues) Omega = Lamda**0.5 T = 2*np.pi/Omega f = 1/T print('Modal properties for the first %d modes:' % numEigen) Mx = []; My = []; Mz = []; Mrx = []; Mry = []; Mrz = [] dofs = ['x','y','z','rx','ry','rz'] print('Mode| T [sec] | f [Hz] | \u03C9 [rad/sec] | Mx [%] | My [%] | Mz [%] | \u2211Mx [%] | \u2211My [%] | \u2211Mz [%]') for mode in range(1,numEigen+1): # Although Mrx, Mry and Mrz are calculated, I am not printing these idx = 0 phi = np.zeros([N,1]) for node in used: for dof in used[node]: phi[idx,0]=op.nodeEigenvector(node,mode,dof) idx += 1 for dof in dofs: l = eval('l'+dof) Mtot = l.T@Mmatrix@l # Total mass in specified global dof Mn = phi.T@Mmatrix@phi # Modal mass in specified global dof Ln = phi.T@Mmatrix@l # Effective modal mass in specified global dof Mnstar = Ln**2/Mn/Mtot*100 # Normalised effective modal mass participating [%], in specified global dof eval('M'+dof).append(Mnstar[0,0]) # Save the modal mass for the specified dof print('%3s |%7s |%6s |%9s |%6s |%6s |%6s |%7s |%7s |%7s' \ % ("{:.0f}".format(mode), "{:.3f}".format(T[mode-1]), "{:.3f}".format(f[mode-1]), "{:.2f}".format(Omega[mode-1]), \ "{:.2f}".format(Mx[mode-1]), "{:.2f}".format(My[mode-1]), "{:.2f}".format(Mz[mode-1]), \ "{:.2f}".format(sum(Mx)), "{:.2f}".format(sum(My)), "{:.2f}".format(sum(Mz)))) Mtot = lx.T@Mmatrix@lx; Mtot = Mtot[0,0]
def analisis_opensees(path, permutaciones): #helper, #win ops.wipe() # bucle para generar los x análisis for i in range(len(permutaciones)): perfil = str(permutaciones[i][0]) nf = permutaciones[i][2] amort = permutaciones[i][3] den = permutaciones[i][4] vel = permutaciones[i][5] capas = len(permutaciones[i][6]) nstep = permutaciones[i][30] dt = float(permutaciones[i][31]) # creación de elementos sElemX = permutaciones[i][1] # elementos en X sElemZ = permutaciones[i][46] # espesor en Z # ============================================================================= # ######## geometría de la columna ###### # ============================================================================= # límite entre capas limite_capa = [] anterior = 0 for j in range(capas): espesor = permutaciones[i][8][j] limite_capa.append(espesor + anterior) anterior = limite_capa[j] print('Límite de capa: ' + str(limite_capa[j])) # creación de elementos y nodos en x nElemX = 1 # elementos en x nNodeX = 2 * nElemX + 1 # nodos en x # creación de elementos y nodos para z nElemZ = 1 # creación de elementos y nodos en Y y totales nElemY = [] # elementos en y sElemY = [] # dimension en y nElemT = 0 for j in range(capas): espesor = permutaciones[i][8][j] nElemY.append(2 * espesor) nElemT += nElemY[j] print('Elementos en capa ' + str(j + 1) + ': ' + str(nElemY[j])) sElemY.append(permutaciones[i][8][j] / nElemY[j]) print('Tamaño de los elementos en capa ' + str(j + 1) + ': ' + str(sElemY[j]) + '\n') # number of nodes in vertical direction in each layer nNodeY = [] # dimension en y nNodeT = 0 s = 0 for j in range(capas - 1): nNodeY.append(4 * nElemY[j]) nNodeT += nNodeY[j] s += 1 print('Nodos en capa ' + str(j + 1) + ': ' + str(nNodeY[j])) nNodeY.append(4 * (nElemY[-1] + 1)) nNodeT += nNodeY[-1] print('Nodos en capa ' + str(s + 1) + ': ' + str(nNodeY[s])) print('Nodos totales: ' + str(nNodeT)) #win.ui.progressBar.setValue(15) # ============================================================================= # ######### Crear nodos del suelo ########## # ============================================================================= # creación de nodos de presión de poros ops.model('basic', '-ndm', 3, '-ndf', 4) with open(path + '/Post-proceso/' + perfil + '/ppNodesInfo.dat', 'w') as f: count = 0.0 yCoord = 0.0 nodos = [] dryNode = [] altura_nf = 10 - nf for k in range(capas): for j in range(0, int(nNodeY[k]), 4): ops.node(j + count + 1, 0.0, yCoord, 0.0) ops.node(j + count + 2, 0.0, yCoord, sElemZ) ops.node(j + count + 3, sElemX, yCoord, sElemZ) ops.node(j + count + 4, sElemX, yCoord, 0.0) f.write( str(int(j + count + 1)) + '\t' + str(0.0) + '\t' + str(yCoord) + '\t' + str(0.0) + '\n') f.write( str(int(j + count + 2)) + '\t' + str(0.0) + '\t' + str(yCoord) + '\t' + str(sElemZ) + '\n') f.write( str(int(j + count + 3)) + '\t' + str(sElemX) + '\t' + str(yCoord) + '\t' + str(sElemZ) + '\n') f.write( str(int(j + count + 4)) + '\t' + str(sElemX) + '\t' + str(yCoord) + '\t' + str(0.0) + '\n') nodos.append(str(j + count + 1)) nodos.append(str(j + count + 2)) nodos.append(str(j + count + 3)) nodos.append(str(j + count + 4)) #designate node sobre la superficie de agua if yCoord >= altura_nf: dryNode.append(j + count + 1) dryNode.append(j + count + 2) dryNode.append(j + count + 3) dryNode.append(j + count + 4) yCoord = (yCoord + sElemY[k]) count = (count + nNodeY[k]) print("Finished creating all soil nodes...") # ============================================================================= # ####### Condiciones de contorno en la base de la columna ######### # ============================================================================= ops.fix(1, *[0, 1, 1, 0]) ops.fix(2, *[0, 1, 1, 0]) ops.fix(3, *[0, 1, 1, 0]) ops.fix(4, *[0, 1, 1, 0]) ops.equalDOF(1, 2, 1) ops.equalDOF(1, 3, 1) ops.equalDOF(1, 4, 1) print('Fin de creación de nodos de la base de la columna\n\n') # ============================================================================= # ####### Condiciones de contorno en los nudos restantes ######### # ============================================================================= count = 0 for k in range(5, int(nNodeT + 1), 4): ops.equalDOF(k, k + 1, *[1, 2, 3]) ops.equalDOF(k, k + 2, *[1, 2, 3]) ops.equalDOF(k, k + 3, *[1, 2, 3]) print('Fin de creación equalDOF para nodos de presión de poros\n\n') for j in range(len(dryNode)): ops.fix(dryNode[j], *[0, 0, 0, 1]) print("Finished creating all soil boundary conditions...") # ============================================================================= # ####### crear elemento y material de suelo ######### # ============================================================================= cargas = [] for j in range(capas): pendiente = permutaciones[i][9][j] slope = math.atan(pendiente / 100) tipo_suelo = permutaciones[i][6][j] rho = permutaciones[i][10][j] Gr = permutaciones[i][12][j] Br = permutaciones[i][13][j] fric = permutaciones[i][15][j] refpress = permutaciones[i][18][j] gmax = permutaciones[i][19][j] presscoef = permutaciones[i][20][j] surf = permutaciones[i][21][j] ev = permutaciones[i][22][j] cc1 = permutaciones[i][23][j] cc3 = permutaciones[i][24][j] cd1 = permutaciones[i][25][j] cd3 = permutaciones[i][26][j] ptang = permutaciones[i][27][j] coh = permutaciones[i][28][j] if tipo_suelo == 'No cohesivo': if float(surf) > 0: ops.nDMaterial('PressureDependMultiYield02', j + 1, 3.0, rho, Gr, Br, fric, gmax, refpress, presscoef, ptang, cc1, cc3, cd1, cd3, float(surf), 5.0, 3.0, *[1.0, 0.0], ev, *[0.9, 0.02, 0.7, 101.0]) else: ops.nDMaterial('PressureDependMultiYield02', j + 1, 3.0, rho, Gr, Br, fric, gmax, refpress, presscoef, ptang, cc1, cc3, cd1, cd3, float(surf), *permutaciones[i][29][j], 5.0, 3.0, *[1.0, 0.0], ev, *[0.9, 0.02, 0.7, 101.0]) cargas.append( [0.0, -9.81 * math.cos(slope), -9.81 * math.sin(slope)]) print('Fin de la creación de material de suelo\n\n') #----------------------------------------------------------------------------------------- # 5. CREATE SOIL ELEMENTS #----------------------------------------------------------------------------------------- count = 0 alpha = 1.5e-6 with open(path + '/Post-proceso/' + perfil + '/ppElemInfo.dat', 'w') as f: # crear elemento de suelo for k in range(capas): for j in range(int(nElemY[k])): nI = 4 * (j + count + 1) - 3 nJ = nI + 1 nK = nI + 2 nL = nI + 3 nM = nI + 4 nN = nI + 5 nO = nI + 6 nP = nI + 7 f.write( str(j + count + 1) + '\t' + str(nI) + '\t' + str(nJ) + '\t' + str(nK) + '\t' + str(nL) + '\t' + str(nM) + '\t' + str(nN) + '\t' + str(nO) + '\t' + str(nP) + '\n') Bc = permutaciones[i][14][k] ev = permutaciones[i][22][k] ops.element('SSPbrickUP', (j + count + 1), *[nI, nJ, nK, nL, nM, nN, nO, nP], (k + 1), float(Bc), 1.0, 1.0, 1.0, 1.0, float(ev), alpha, cargas[k][0], cargas[k][1], cargas[k][2]) count = (count + int(nElemY[k])) print('Fin de la creación del elemento del suelo\n\n') #win.ui.progressBar.setValue(25) # ============================================================================= # ######### Amortiguamiento de Lysmer ########## # ============================================================================= ops.model('basic', '-ndm', 3, '-ndf', 3) # definir nodos y coordenadas del amortiguamiento dashF = nNodeT + 1 dashX = nNodeT + 2 dashZ = nNodeT + 3 ops.node(dashF, 0.0, 0.0, 0.0) ops.node(dashX, 0.0, 0.0, 0.0) ops.node(dashZ, 0.0, 0.0, 0.0) # definir restricciones para los nodos de amortiguamiento ops.fix(dashF, 1, 1, 1) ops.fix(dashX, 0, 1, 1) ops.fix(dashZ, 1, 1, 0) # definir equalDOF para el amortiguamiento en la base del suelo ops.equalDOF(1, dashX, 1) ops.equalDOF(1, dashZ, 3) print( 'Fin de la creación de condiciones de contorno de los nodos de amortiguamiento\n\n' ) # definir el material de amortiguamiento colArea = sElemX * sElemZ dashpotCoeff = vel * den * colArea ops.uniaxialMaterial('Viscous', capas + 1, dashpotCoeff, 1.0) # definir el elemento ops.element('zeroLength', nElemT + 1, *[dashF, dashX], '-mat', capas + 1, '-dir', *[1]) ops.element('zeroLength', nElemT + 2, *[dashF, dashZ], '-mat', capas + 1, '-dir', *[3]) print('Fin de la creación del elemento de amortiguamiento\n\n') #----------------------------------------------------------------------------------------- # 9. DEFINE ANALYSIS PARAMETERS #----------------------------------------------------------------------------------------- # amortiguamiento de Rayleigh # frecuencia menor omega1 = 2 * math.pi * 0.2 # frecuencia mayor omega2 = 2 * math.pi * 20 a0 = 2.0 * (amort / 100) * omega1 * omega2 / (omega1 + omega2) a1 = 2.0 * (amort / 100) / (omega1 + omega2) print('Coeficientes de amortiguamiento' + '\n' + 'a0: ' + format(a0, '.6f') + '\n' + 'a1: ' + format(a1, '.6f') + '\n\n') #win.ui.progressBar.setValue(35) # ============================================================================= # ######## Determinación de análisis estático ######### # ============================================================================= #---DETERMINE STABLE ANALYSIS TIME STEP USING CFL CONDITION # se determina a partir de un análisis transitorio de largo tiempo duration = nstep * dt # tamaño mínimo del elemento y velocidad máxima minSize = sElemY[0] vsMax = permutaciones[i][11][0] for j in range(1, capas): if sElemY[j] < minSize: minSize = sElemY[j] if permutaciones[i][11][j] > vsMax: vsMax = permutaciones[i][11][j] # trial analysis time step kTrial = minSize / (vsMax**0.5) # tiempo de análisis y pasos de tiempo if dt <= kTrial: nStep = nstep dT = dt else: nStep = int(math.floor(duration / kTrial) + 1) dT = duration / nStep print('Número de pasos en el análisis: ' + str(nStep) + '\n') print('Incremento de tiempo: ' + str(dT) + '\n\n') #---------------------------------------------------------------------------------------- # 7. GRAVITY ANALYSIS #----------------------------------------------------------------------------------------- ops.model('basic', '-ndm', 3, '-ndf', 4) ops.updateMaterialStage('-material', int(k + 1), '-stage', 0) # algoritmo de análisis estático ops.constraints(permutaciones[i][32][0], float(permutaciones[i][32][1]), float(permutaciones[i][32][2])) ops.test(permutaciones[i][34][0], float(permutaciones[i][34][1]), int(permutaciones[i][34][2]), int(permutaciones[i][34][3])) ops.algorithm(permutaciones[i][38][0]) ops.numberer(permutaciones[i][33][0]) ops.system(permutaciones[i][36][0]) ops.integrator(permutaciones[i][35][0], float(permutaciones[i][35][1]), float(permutaciones[i][35][2])) ops.analysis(permutaciones[i][37][0]) print('Inicio de análisis estático elástico\n\n') ops.start() ops.analyze(20, 5.0e2) print('Fin de análisis estático elástico\n\n') #win.ui.progressBar.setValue(40) # update materials to consider plastic behavior # ============================================================================= ops.updateMaterialStage('-material', int(k + 1), '-stage', 1) # ============================================================================= # plastic gravity loading print('Inicio de análisis estático plástico\n\n') ok = ops.analyze(40, 5.0e-2) if ok != 0: error = 'Error de convergencia en análisis estático de modelo' + str( perfil) + '\n\n' print(error) break print('Fin de análisis estático plástico\n\n') #----------------------------------------------------------------------------------------- # 11. UPDATE ELEMENT PERMEABILITY VALUES FOR POST-GRAVITY ANALYSIS #----------------------------------------------------------------------------------------- ini = 1 aum = 0 sum = 0 for j in range(capas): #Layer 3 ops.setParameter( '-val', permutaciones[i][16][j], ['-eleRange', int(ini + aum), int(nElemY[j] + sum)], 'xPerm') ops.setParameter( '-val', permutaciones[i][17][j], ['-eleRange', int(ini + aum), int(nElemY[j] + sum)], 'yPerm') ops.setParameter( '-val', permutaciones[i][16][j], ['-eleRange', int(ini + aum), int(nElemY[j] + sum)], 'zPerm') ini = nElemY[j] + sum sum += nElemY[j] aum = 1 print("Finished updating permeabilities for dynamic analysis...") # ============================================================================= # ########### Grabadores dinámicos ########## # ============================================================================= ops.setTime(0.0) ops.wipeAnalysis() ops.remove('recorders') # tiempo de la grabadora recDT = 10 * dt path_acel = path + '/Post-proceso/' + perfil + '/dinamico/aceleraciones/' ops.recorder('Node', '-file', path_acel + 'accelerationx.out', '-time', '-dT', recDT, '-node', *nodos, '-dof', 1, 'accel') print('Fin de creación de grabadores\n\n') #win.ui.progressBar.setValue(50) # ============================================================================= # ######### Determinación de análisis dinámico ########## # ============================================================================= # objeto de serie temporal para el historial de fuerza path_vel = path + '/Pre-proceso/' + perfil + '/TREASISL2.txt' ops.timeSeries('Path', 1, '-dt', dt, '-filePath', path_vel, '-factor', dashpotCoeff) ops.pattern('Plain', 10, 1) ops.load(1, *[1.0, 0.0, 0.0, 0.0]) #CAMBIO REALIZADO OJO print('Fin de creación de carga dinámica\n\n') # algoritmo de análisis dinámico ops.constraints(permutaciones[i][39][0], float(permutaciones[i][39][1]), float(permutaciones[i][39][2])) ops.test(permutaciones[i][41][0], float(permutaciones[i][41][1]), int(permutaciones[i][41][2]), int(permutaciones[i][41][3])) ops.algorithm(permutaciones[i][45][0]) ops.numberer(permutaciones[i][40][0]) ops.system(permutaciones[i][43][0]) ops.integrator(permutaciones[i][42][0], float(permutaciones[i][42][1]), float(permutaciones[i][42][2])) ops.analysis(permutaciones[i][44][0]) # ============================================================================= # ops.rayleigh(a0, a1, 0.0, 0.0) # ============================================================================= print('Inicio de análisis dinámico\n\n') #win.ui.progressBar.setValue(85) ok = ops.analyze(nStep, dT) if ok != 0: error = 'Error de convergencia en análisis dinámico de modelo' + str( permutaciones[i][0]) + '\n\n' print(error) curTime = ops.getTime() mTime = curTime print('cursTime:' + str(curTime)) curStep = (curTime / dT) print('cursStep:' + str(curStep)) rStep = (nStep - curStep) * 2.0 remStep = int(nStep - curStep) * 2.0 print('remSTep:' + str(curStep)) dT = (dT / 2) print('dT:' + str(dT)) ops.analyze(remStep, dT) if ok != 0: error = 'Error de convergencia en análisis dinámico de modelo' + str( permutaciones[i][0]) + '\n\n' print(error) curTime = ops.getTime() print('cursTime:' + str(curTime)) curStep = (curTime - mTime) / dT print('cursStep:' + str(curStep)) remStep = int(rStep - curStep) * 2 print('remSTep:' + str(curStep)) dT = (dT / 2) print('dT:' + str(dT)) ops.analyze(remStep, dT) print('Fin de análisis dinámico\n\n') ops.wipe()
def __init__(self): # AIが取れるアクションの設定 self.action = np.array([ 0, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 ]) self.naction = len(self.action) self.beta = 1 / 4 # 1質点系モデル self.T0 = 4 self.h = self.action[0] self.hs = [self.h] self.m = 100 self.k = 4 * np.pi**2 * self.m / self.T0**2 # 入力地震動 self.dt = 0.02 to_meter = 0.01 # cmをmに変換する値 self.wave_url = 'https://github.com/kakemotokeita/dqn-seismic-control/blob/master/wave/sample.csv' with urllib.request.urlopen(self.wave_url) as wave_file: self.wave_data = np.loadtxt( wave_file, usecols=(0, ), delimiter=',', skiprows=3) * to_meter # OpenSees設定 op.wipe() op.model('basic', '-ndm', 2, '-ndf', 3) # 2 dimensions, 3 dof per node # 節点 self.bot_node = 1 self.top_node = 2 op.node(self.bot_node, 0., 0.) op.node(self.top_node, 0., 0.) # 境界条件 op.fix(self.top_node, FREE, FIXED, FIXED) op.fix(self.bot_node, FIXED, FIXED, FIXED) op.equalDOF(1, 2, *[Y, ROTZ]) # 質量 op.mass(self.top_node, self.m, 0., 0.) # 弾性剛性 elastic_mat_tag = 1 Fy = 1e10 E0 = self.k b = 1.0 op.uniaxialMaterial('Steel01', elastic_mat_tag, Fy, E0, b) # Assign zero length element beam_tag = 1 op.element('zeroLength', beam_tag, self.bot_node, self.top_node, "-mat", elastic_mat_tag, "-dir", 1, '-doRayleigh', 1) # Define the dynamic analysis load_tag_dynamic = 1 pattern_tag_dynamic = 1 self.values = list(-1 * self.wave_data) # should be negative op.timeSeries('Path', load_tag_dynamic, '-dt', self.dt, '-values', *self.values) op.pattern('UniformExcitation', pattern_tag_dynamic, X, '-accel', load_tag_dynamic) # 減衰の設定 self.w0 = op.eigen('-fullGenLapack', 1)[0]**0.5 self.alpha_m = 0.0 self.beta_k = 2 * self.h / self.w0 self.beta_k_init = 0.0 self.beta_k_comm = 0.0 op.rayleigh(self.alpha_m, self.beta_k, self.beta_k_init, self.beta_k_comm) # Run the dynamic analysis op.wipeAnalysis() op.algorithm('Newton') op.system('SparseGeneral') op.numberer('RCM') op.constraints('Transformation') op.integrator('Newmark', 0.5, 0.25) op.analysis('Transient') tol = 1.0e-10 iterations = 10 op.test('EnergyIncr', tol, iterations, 0, 2) self.i_pre = 0 self.i = 0 self.i_next = 0 self.time = 0 self.analysis_time = (len(self.values) - 1) * self.dt self.dis = 0 self.vel = 0 self.acc = 0 self.a_acc = 0 self.force = 0 self.resp = { "time": [], "dis": [], "acc": [], "a_acc": [], "vel": [], "force": [], } self.done = False
ops.record() # create constraint object ops.constraints('Plain') # create numberer object ops.numberer('Plain') # create convergence test object ops.test('PFEM', 1e-5, 1e-5, 1e-5, 1e-5, 1e-15, 1e-15, 20, 3, 1, 2) # create algorithm object ops.algorithm('Newton') # create integrator object ops.integrator('PFEM') # create SOE object ops.system('PFEM', '-umfpack', '-print') # create analysis object ops.analysis('PFEM', dtmax, dtmin, b2) # analysis while ops.getTime() < totaltime: # analysis if ops.analyze() < 0: break ops.remesh(alpha)
def test_EigenAnal_twoStoryFrame1(): ops.wipe() #input m = 100.0 / 386.0 numModes = 2 #material A = 63.41 I = 320.0 E = 29000.0 #geometry L = 240. h = 120. # define the model #--------------------------------- #model builder ops.model('BasicBuilder', '-ndm', 2, '-ndf', 3) # nodal coordinates: ops.node(1, 0., 0.) ops.node(2, L, 0.) ops.node(3, 0., h) ops.node(4, L, h) ops.node(5, 0., 2 * h) ops.node(6, L, 2 * h) # Single point constraints -- Boundary Conditions ops.fix(1, 1, 1, 1) ops.fix(2, 1, 1, 1) # assign mass ops.mass(3, m, 0., 0.) ops.mass(4, m, 0., 0.) ops.mass(5, m / 2., 0., 0.) ops.mass(6, m / 2., 0., 0.) # define geometric transformation: TransfTag = 1 ops.geomTransf('Linear', TransfTag) # define elements: # columns ops.element('elasticBeamColumn', 1, 1, 3, A, E, 2. * I, TransfTag) ops.element('elasticBeamColumn', 2, 3, 5, A, E, I, TransfTag) ops.element('elasticBeamColumn', 3, 2, 4, A, E, 2. * I, TransfTag) ops.element('elasticBeamColumn', 4, 4, 6, A, E, I, TransfTag) # beams ops.element('elasticBeamColumn', 5, 3, 4, A, E, 2 * I, TransfTag) ops.element('elasticBeamColumn', 6, 5, 6, A, E, I, TransfTag) # record eigenvectors #---------------------- # for { k 1 } { k <= numModes } { incr k } { # recorder Node -file format "modes/mode%i.out" k -nodeRange 1 6 -dof 1 2 3 "eigen k" # } # perform eigen analysis #----------------------------- lamb = ops.eigen(numModes) # calculate frequencies and periods of the structure #--------------------------------------------------- omega = [] f = [] T = [] pi = 3.141593 for lam in lamb: print("labmbda = ", lam) omega.append(math.sqrt(lam)) f.append(math.sqrt(lam) / (2 * pi)) T.append((2 * pi) / math.sqrt(lam)) print("periods are ", T) # write the output file cosisting of periods #-------------------------------------------- period = "Periods.txt" Periods = open(period, "w") for t in T: Periods.write(repr(t) + '\n') Periods.close() # create display for mode shapes #--------------------------------- # windowTitle xLoc yLoc xPixels yPixels # recorder display "Mode Shape 1" 10 10 500 500 -wipe # prp h h 1 # projection reference point (prp) defines the center of projection (viewer eye) # vup 0 1 0 # view-up vector (vup) # vpn 0 0 1 # view-plane normal (vpn) # viewWindow -200 200 -200 200 # coordiantes of the window relative to prp # display -1 5 20 # the 1st arg. is the tag for display mode (ex. -1 is for the first mode shape) # the 2nd arg. is magnification factor for nodes, the 3rd arg. is magnif. factor of deformed shape # recorder display "Mode Shape 2" 10 510 500 500 -wipe # prp h h 1 # vup 0 1 0 # vpn 0 0 1 # viewWindow -200 200 -200 200 # display -2 5 20 # Run a one step gravity load with no loading (to record eigenvectors) #----------------------------------------------------------------------- ops.integrator('LoadControl', 0.0, 1, 0.0, 0.0) # Convergence test # tolerance maxIter displayCode ops.test('EnergyIncr', 1.0e-10, 100, 0) # Solution algorithm ops.algorithm('Newton') # DOF numberer ops.numberer('RCM') # Constraint handler ops.constraints('Transformation') # System of equations solver ops.system('ProfileSPD') ops.analysis('Static') res = ops.analyze(1) if res < 0: print("Modal analysis failed") # get values of eigenvectors for translational DOFs #--------------------------------------------------- f11 = ops.nodeEigenvector(3, 1, 1) f21 = ops.nodeEigenvector(5, 1, 1) f12 = ops.nodeEigenvector(3, 2, 1) f22 = ops.nodeEigenvector(5, 2, 1) print("eigenvector 1: ", [f11 / f21, f21 / f21]) print("eigenvector 2: ", [f12 / f22, f22 / f22]) assert abs(T[0] - 0.628538768190688) < 1e-12 and abs( T[1] - 0.2359388635361575) < 1e-12 and abs( f11 / f21 - 0.3869004256389493) < 1e-12 and abs( f21 / f21 - 1.0) < 1e-12 and abs(f12 / f22 + 1.2923221761110006 ) < 1e-12 and abs(f22 / f22 - 1.0) < 1e-12
def test_PinchedCylinder(): P = 1 R = 300. L = 600. E = 3e6 thickness = R / 100. uExact = -164.24 * P / (E * thickness) formatString = '{:>20s}{:>15.5e}' print("\n Displacement Under Applied Load:\n") formatString = '{:>20s}{:>10s}{:>15s}{:>15s}{:>15s}' print( formatString.format("Element Type", " mesh ", "OpenSees", "Exact", "%Error")) for shellType in ['ShellMITC4', 'ShellDKGQ', 'ShellNLDKGQ']: for numEle in [4, 16, 32]: ops.wipe() # ---------------------------- # Start of model generation # ---------------------------- ops.model('basic', '-ndm', 3, '-ndf', 6) radius = R length = L / 2. E = 3.0e6 v = 0.3 PI = 3.14159 ops.nDMaterial('ElasticIsotropic', 1, E, v) ops.nDMaterial('PlateFiber', 2, 1) ops.section('PlateFiber', 1, 2, thickness) #section ElasticMembranePlateSection 1 E v thickness 0. nR = numEle nY = numEle tipNode = (nR + 1) * (nY + 1) #create nodes nodeTag = 1 for i in range(nR + 1): theta = i * PI / (2.0 * nR) xLoc = 300 * cos(theta) zLoc = 300 * sin(theta) for j in range(nY + 1): yLoc = j * length / (1.0 * nY) ops.node(nodeTag, xLoc, yLoc, zLoc) nodeTag += 1 #create elements eleTag = 1 for i in range(nR): iNode = i * (nY + 1) + 1 jNode = iNode + 1 lNode = iNode + (nY + 1) kNode = lNode + 1 for j in range(nY): ops.element(shellType, eleTag, iNode, jNode, kNode, lNode, 1) eleTag += 1 iNode += 1 jNode += 1 kNode += 1 lNode += 1 # define the boundary conditions ops.fixX(radius, 0, 0, 1, 1, 1, 0, '-tol', 1.0e-2) ops.fixZ(radius, 1, 0, 0, 0, 1, 1, '-tol', 1.0e-2) ops.fixY(0., 1, 0, 1, 0, 0, 0, '-tol', 1.0e-2) ops.fixY(length, 0, 1, 0, 1, 0, 1, '-tol', 1.0e-2) #define loads ops.timeSeries('Linear', 1) ops.pattern('Plain', 1, 1) ops.load(tipNode, 0., 0., -1. / 4.0, 0., 0., 0.) ops.integrator('LoadControl', 1.0) ops.test('EnergyIncr', 1.0e-10, 20, 0) ops.algorithm('Newton') ops.numberer('RCM') ops.constraints('Plain') ops.system('Umfpack') ops.analysis('Static') ops.analyze(1) res = ops.nodeDisp(tipNode, 3) err = abs(100 * (uExact - res) / uExact) formatString = '{:>20s}{:>5d}{:>3s}{:>2d}{:>15.5e}{:>15.5e}{:>15.2f}' print( formatString.format(shellType, numEle, " x ", numEle, res, uExact, err)) tol = 5.0 if abs(100 * (uExact - res) / uExact) > tol: testOK = 1 else: testOK = 0 assert testOK == 0
ops.node(2, 144.0, 0.0) ops.node(3, 168.0, 0.0) ops.node(4, 72.0, 96.0) ops.fix(2, 1, 1) ops.fix(3, 1, 1) ops.element('Truss', 2, 2, 4, 5.0, 1) ops.element('Truss', 3, 3, 4, 5.0, 1) ops.constraints('Transformation') ops.numberer('ParallelPlain') ops.system('Mumps') ops.test('NormDispIncr', 1e-6, 6, 2) ops.algorithm('Newton') ops.integrator('LoadControl', 0.1) ops.analysis('Static') ops.analyze(10) print('Node 4: ', [ops.nodeCoord(4), ops.nodeDisp(4)]) ops.loadConst('-time', 0.0) if pid == 0: ops.pattern('Plain', 2, 1) ops.load(4, 1.0, 0.0) ops.domainChange() ops.integrator('ParallelDisplacementControl', 4, 1, 0.1) ops.analyze(10)
def get_inelastic_response(mass, k_spring, f_yield, motion, dt, xi=0.05, r_post=0.0): """ Run seismic analysis of a nonlinear SDOF :param mass: SDOF mass :param k_spring: spring stiffness :param f_yield: yield strength :param motion: list, acceleration values :param dt: float, time step of acceleration values :param xi: damping ratio :param r_post: post-yield stiffness :return: """ opy.wipe() opy.model('basic', '-ndm', 2, '-ndf', 3) # 2 dimensions, 3 dof per node # Establish nodes bot_node = 1 top_node = 2 opy.node(bot_node, 0., 0.) opy.node(top_node, 0., 0.) # Fix bottom node opy.fix(top_node, opc.FREE, opc.FIXED, opc.FIXED) opy.fix(bot_node, opc.FIXED, opc.FIXED, opc.FIXED) # Set out-of-plane DOFs to be slaved opy.equalDOF(1, 2, *[2, 3]) # nodal mass (weight / g): opy.mass(top_node, mass, 0., 0.) # Define material bilinear_mat_tag = 1 mat_type = "Steel01" mat_props = [f_yield, k_spring, r_post] opy.uniaxialMaterial(mat_type, bilinear_mat_tag, *mat_props) # Assign zero length element beam_tag = 1 opy.element('zeroLength', beam_tag, bot_node, top_node, "-mat", bilinear_mat_tag, "-dir", 1, '-doRayleigh', 1) # Define the dynamic analysis load_tag_dynamic = 1 pattern_tag_dynamic = 1 values = list(-1 * motion) # should be negative opy.timeSeries('Path', load_tag_dynamic, '-dt', dt, '-values', *values) opy.pattern('UniformExcitation', pattern_tag_dynamic, opc.X, '-accel', load_tag_dynamic) # set damping based on first eigen mode angular_freq2 = opy.eigen('-fullGenLapack', 1) if hasattr(angular_freq2, '__len__'): angular_freq2 = angular_freq2[0] angular_freq = angular_freq2**0.5 alpha_m = 0.0 beta_k = 2 * xi / angular_freq beta_k_comm = 0.0 beta_k_init = 0.0 opy.rayleigh(alpha_m, beta_k, beta_k_init, beta_k_comm) # Run the dynamic analysis opy.wipeAnalysis() opy.algorithm('Newton') opy.system('SparseGeneral') opy.numberer('RCM') opy.constraints('Transformation') opy.integrator('Newmark', 0.5, 0.25) opy.analysis('Transient') tol = 1.0e-10 iterations = 10 opy.test('EnergyIncr', tol, iterations, 0, 2) analysis_time = (len(values) - 1) * dt analysis_dt = 0.001 outputs = { "time": [], "rel_disp": [], "rel_accel": [], "rel_vel": [], "force": [] } while opy.getTime() < analysis_time: curr_time = opy.getTime() opy.analyze(1, analysis_dt) outputs["time"].append(curr_time) outputs["rel_disp"].append(opy.nodeDisp(top_node, 1)) outputs["rel_vel"].append(opy.nodeVel(top_node, 1)) outputs["rel_accel"].append(opy.nodeAccel(top_node, 1)) opy.reactions() outputs["force"].append( -opy.nodeReaction(bot_node, 1)) # Negative since diff node opy.wipe() for item in outputs: outputs[item] = np.array(outputs[item]) return outputs
def test_PlanarTruss(): A = 10.0 E = 3000. L = 200.0 alpha = 30.0 P = 200.0 sigmaYP = 60.0 pi = 2.0*asin(1.0) alphaRad = alpha*pi/180. cosA = cos(alphaRad) sinA = sin(alphaRad) # EXACT RESULTS per Popov F1 = P/(2*cosA*cosA*cosA + 1) F2 = F1*cosA*cosA disp = -F1*L/(A*E) # create the finite element model ops.wipe() ops.model('Basic', '-ndm', 2, '-ndf', 2) dX = L*tan(alphaRad) ops.node( 1, 0.0, 0.0) ops.node( 2, dX, 0.0) ops.node( 3, 2.0*dX, 0.0) ops.node( 4, dX, -L ) ops.fix( 1, 1, 1) ops.fix( 2, 1, 1) ops.fix( 3, 1, 1) ops.uniaxialMaterial('Elastic', 1, E) ops.element('Truss', 1, 1, 4, A, 1) ops.element('Truss', 2, 2, 4, A, 1) ops.element('Truss', 3, 3, 4, A, 1) ops.timeSeries('Linear', 1) ops.pattern('Plain', 1, 1) ops.load( 4, 0., -P) ops.numberer( 'Plain') ops.constraints( 'Plain') ops.algorithm( 'Linear') ops.system('ProfileSPD') ops.integrator('LoadControl', 1.0) ops.analysis('Static') ops.analyze(1) # determine PASS/FAILURE of test testOK = 0 # # print table of camparsion # comparisonResults = F2, F1, F2 print("\nElement Force Comparison:") tol = 1.0e-6 print('{:>10}{:>15}{:>15}'.format('Element','OpenSees','Popov')) for i in range(1,4): exactResult = comparisonResults[i-1] eleForce = ops.eleResponse(i, 'axialForce') print('{:>10d}{:>15.4f}{:>15.4f}'.format(i, eleForce[0], exactResult)) if abs(eleForce[0]-exactResult) > tol: testOK = -1 print("failed force-> ", abs(eleForce[0]-exactResult), " ", tol) print("\nDisplacement Comparison:") osDisp = ops.nodeDisp( 4, 2) print('{:>10}{:>15.8f}{:>10}{:>15.8f}'.format('OpenSees:',osDisp,'Exact:', disp)) if abs(osDisp-disp) > tol: testOK = -1 print("failed linear disp") print("\n\n - NonLinear (Example2.23)") #EXACT # Exact per Popov PA = (sigmaYP*A) * (1.0+2*cosA*cosA*cosA) dispA = PA/P*disp PB = (sigmaYP*A) * (1.0+2*cosA) dispB = dispA / (cosA*cosA) # create the new finite element model for nonlinear case # will apply failure loads and calculate displacements ops.wipe() ops.model('Basic', '-ndm', 2, '-ndf', 2) ops.node( 1, 0.0, 0.0) ops.node( 2, dX, 0.0) ops.node( 3, 2.0*dX, 0.0) ops.node( 4, dX, -L ) ops.fix( 1, 1, 1) ops.fix( 2, 1, 1) ops.fix( 3, 1, 1) ops.uniaxialMaterial( 'ElasticPP', 1, E, sigmaYP/E) ops.element('Truss', 1, 1, 4, A, 1) ops.element('Truss', 2, 2, 4, A, 1) ops.element('Truss', 3, 3, 4, A, 1) ops.timeSeries( 'Path', 1, '-dt', 1.0, '-values', 0.0, PA, PB, PB) ops.pattern('Plain', 1, 1) ops.load( 4, 0., -1.0) ops.numberer('Plain') ops.constraints('Plain') ops.algorithm('Linear') ops.system('ProfileSPD') ops.integrator('LoadControl', 1.0) ops.analysis('Static') ops.analyze(1) osDispA = ops.nodeDisp( 4, 2) #print node 4 #print ele ops.analyze(1) osDispB = ops.nodeDisp( 4, 2) #print node 4 #print ele # determine PASS/FAILURE of test testOK = 0 print("\nDisplacement Comparison:") print("elastic limit state:") osDisp = ops.nodeDisp( 4, 2) print('{:>10}{:>15.8f}{:>10}{:>15.8f}'.format('OpenSees:',osDispA,'Exact:',dispA)) if abs(osDispA-dispA) > tol: testOK = -1 print("failed nonlineaer elastic limit disp") print("collapse limit state:") print('{:>10}{:>15.8f}{:>10}{:>15.8f}'.format('OpenSees:',osDispB,'Exact:',dispB)) if abs(osDispB-dispB) > tol: testOK = -1 print("failed nonlineaer collapse limit disp") assert testOK == 0
Hload = Weight maxNumIter = 6 tol = 1e-8 op.timeSeries('Linear', 2) op.pattern('Plain', 200, 2) op.load(2, Hload, 0.0, 0.0) op.wipeAnalysis() op.constraints('Plain') op.numberer('Plain') op.system('BandGeneral') op.test('EnergyIncr', Tol, maxNumIter) op.algorithm('Newton') op.integrator('DisplacementControl', IDctrlNode, IDctrlDOF, Dincr) op.analysis('Static') Nsteps = int(Dmax / Dincr) ok = op.analyze(Nsteps) print(ok) # for gravity analysis, load control is fine, 0.1 is the load factor increment (http://opensees.berkeley.edu/wiki/index.php/Load_Control) test = { 1: 'NormDispIncr', 2: 'RelativeEnergyIncr', 4: 'RelativeNormUnbalance', 5: 'RelativeNormDispIncr', 6: 'NormUnbalance'
def NSProcedure(ndm, ndf, NbaysX, NbaysZ, NStr, XbayL, ZbayL, StoryH, lon, lat, SHL, Vso, gamma_soil, nu_soil, Re, fpc, Ec, gamma_conc, fy, E0, bsteel, ColTransfType, BeamEffFact, ColEffFact, g, Qsd, Ql, Qlr, EMs, R, Ie, StrType, BldTypCo, BldTypCm, DsgnType, dirs, directory): # The Nonlinear Static Procdure is executed in order to get responses # of a defined building. import openseespy.opensees as ops import OPSDefsMOD as OPSDMOD import OPSDefsAN as OPSDAN from timeit import default_timer as timer import ASCE716Seismic as ASCE716 import ASCE4117 import matplotlib.pyplot as plt import pickle import numpy as np for mm in range(len(NbaysX)): for nn in range(len(NStr)): for oo in range(len(Vso)): Teff = np.zeros( (len(dirs) )) # [s][LIST] effective lateral period of building. for ii in range(len(dirs)): time_o = timer() # Some previous definitions # ---------------------------- if DsgnType in ('conv_dsgn'): flex = 'no' elif DsgnType in ('ssi_dsgn'): flex = 'yes' # SiteClass = ASCE716.detSiteClass(Vso[oo]) # Unpicklin' some stored parameters from design process. # ------------------------------------------------------ workpath = directory + '\\RegularDesign\\' + str(NbaysX[mm])+'BayX'+str(NbaysZ)+\ 'BayZ'+str(NStr[nn])+'FLRS'+str(Vso[oo])+'.pickle' with open(workpath, 'rb') as f: ColDims, Colreinf, XBDims, XBreinf, ZBDims, ZBreinf, _, _, _, _, _, _, _, _, _, _ = pickle.load( f) # Calculation of height vector # ------------------------------ if flex in ('Y', 'YES', 'Yes', 'yES', 'yes', 'y'): # [m][LIST] with level height starting from first level or from base if foundation flexibility is included. hx = [0.0001] else: hx = [] for i in range(NStr[nn]): hx.append((i + 1) * StoryH) # Plan Dimensions of Building B = NbaysZ * ZbayL # [m] short side of building plan. L = NbaysX[mm] * XbayL # [m] long side of building plan. # Determination of MCEr spectral acceleration parameters # ------------------------------------------------------ (Sxs, Sx1) = ASCE4117.detSxi(lon, lat, Vso[oo], SHL) # MODELING OF THE STRUCTURE USING OPENSEESPY # =========================================== ops.wipe() OPSDMOD.ModelGen(ndm, ndf) OPSDMOD.NodeGen(NbaysX[mm], NbaysZ, XbayL, ZbayL, StoryH, NStr[nn], flex) OPSDMOD.MastNodeGen(NbaysX[mm], NbaysZ, XbayL, ZbayL, StoryH, NStr[nn], flex, coords=0) OPSDMOD.SPConstGen(NbaysX[mm], NbaysZ, flex) OPSDMOD.MPConstGen(NbaysX[mm], NbaysZ, NStr[nn], flex) OPSDMOD.MatGenRCB(fpc, Ec, fy, E0, bsteel) # OPSDMOD.GeomTransGen(ColTransfType,XBD=[min(XBDims[:,0]),min(XBDims[:,1])],\ # ZBD=[min(ZBDims[:,0]),min(ZBDims[:,1])],\ # ColD=[min(ColDims[:,0]),min(ColDims[:,1])]) OPSDMOD.GeomTransGen( ColTransfType, ColD=[min(ColDims[:, 0]), min(ColDims[:, 1])]) # OPSDMOD.GeomTransGen(ColTransfType) if flex in ('Y', 'YES', 'Yes', 'yES', 'yes', 'y'): # Interface elements generation for foundation flexibility considerations. # ========================================================================= # Materials generation: stiffness constants accounting for soil flexibility. # --------------------------------------------------------------------------- OPSDMOD.FoundFlexMaterials(NbaysX[mm],NbaysZ,XbayL,ZbayL,Sxs,Vso[oo],gamma_soil,nu_soil,B,L,Re,\ D=0,omega_soil=0,analtype='lat') # Zero-Length elements creation for connecting base nodes. OPSDMOD.FoundFlexZLElements(NbaysX[mm], NbaysZ, XbayL, ZbayL, B, L, Re) OPSDMOD.ElementGen(NbaysX[mm],NbaysZ,XbayL,ZbayL,NStr[nn],StoryH,XBDims,ZBDims,\ ColDims,BeamEffFact,ColEffFact,Ec,fy,EMs,\ XBreinf,ZBreinf,Colreinf,N=5,rec=0.0654,nuconc=0.2,dbar=0.025) [Wx,MassInputMatr] = \ OPSDMOD.LumpedMassGen(NbaysX[mm],NbaysZ,XBDims,ZBDims,ColDims,gamma_conc,g,XbayL,ZbayL,NStr[nn],StoryH,Qsd,flex) W = sum(Wx) # [kN] total weight of the building # GRAVITY LOADS APPLIED TO MODEL ACCORDINGO TO ASCE4117 # ====================================================== # According to ASCE4117 Section 7.2.2, equation (7-3), the combination # of gravitational loads mus be as follows: # Qg = Qd + 0.25*Ql + Qs (7-3) OPSDMOD.DeadLoadGen(NbaysX[mm], NbaysZ, NStr[nn], XBDims, ZBDims, ColDims, gamma_conc) OPSDMOD.SuperDeadLoadGen(NbaysX[mm], NbaysZ, NStr[nn], XbayL, ZbayL, Qsd) OPSDMOD.LiveLoadGen(NbaysX[mm], NbaysZ, NStr[nn], XbayL, ZbayL, 0.25 * Ql, 0.25 * Qlr) # GRAVITY-LOADS-CASE ANALYSIS. # ============================ ops.system('ProfileSPD') ops.constraints('Transformation') ops.numberer('RCM') ops.test('NormDispIncr', 1.0e-4, 100) ops.algorithm('KrylovNewton') ops.integrator('LoadControl', 1) ops.analysis('Static') ops.analyze(1) # Vertical reactions Calculation for verification. # ------------------------------------------------ ops.reactions() YReact = 0 for i in range((NbaysX[mm] + 1) * (NbaysZ + 1)): if flex in ('Y', 'YES', 'Yes', 'yES', 'yes', 'y'): YReact += ops.nodeReaction(int(i + 1), 2) else: YReact += ops.nodeReaction(int(i + 1 + 1e4), 2) # ========================================================================== # MODAL ANALYSIS FOR DETERMINING FUNDAMENTAL PERIOD AND ITS DIRECTION. # ========================================================================== (T, Tmaxver, Mast) = OPSDAN.ModalAnalysis(NStr[nn], B, L, Wx, flex) print(T) # ================== # PUSHOVER ANALYSIS # ================== # Lateral Force used for analysis # -------------------------------- # Using functions from ASCE716Seismic Module. (_,_,_,_,_,_,_,_,_,_,_,FxF,_,_,_) = \ ASCE716.ELFP(Sxs,Sx1,Vso[oo],Wx,R,Ie,hx,StrType,T[0,ii]) # Aplication of forces to the model. # ---------------------------------- ops.loadConst('-time', 0.0) MdeShape = OPSDMOD.POForceGen(NStr[nn], FxF, dirs[ii], flex) # ============================================= # First Execution of the analysis and output results. # ============================================= (results1,dtg1,tgfactor1) = \ OPSDAN.POAnalysisProc(lon,lat,Vso[oo],SHL,NbaysX[mm],NbaysZ,\ NStr[nn],StoryH,R,Ie,BldTypCo,BldTypCm,\ T[0,ii],W,dirs[ii],flex,\ DispIncr=0,beta=0.05,TL=8.,Tf=6.0,Npts=500,Vy=0,Te=0) # [Disp,Force] # ===================================================== # Determining the first approximation of values of Vy # and calculation of effective fundamental period for NSP # ===================================================== (Delta_y, V_y, Delta_d, V_d, Ke, alpha1, alpha2) = \ ASCE4117.IFDC(dtg1,results1) Ki = Mast[ii] * 4 * np.pi**2 / T[ 0, ii]**2 # [kN/m] elastic lateral stiffness of the building. Teff[ii] = T[0, ii] * ( Ki / Ke )**0.5 # [s] effctive fundamental period of building. # ============================================= # Second Execution of the analysis and output results. # ============================================= ops.wipe() OPSDMOD.ModelGen(ndm, ndf) OPSDMOD.NodeGen(NbaysX[mm], NbaysZ, XbayL, ZbayL, StoryH, NStr[nn], flex) OPSDMOD.MastNodeGen(NbaysX[mm], NbaysZ, XbayL, ZbayL, StoryH, NStr[nn], flex, coords=0) OPSDMOD.SPConstGen(NbaysX[mm], NbaysZ, flex) OPSDMOD.MPConstGen(NbaysX[mm], NbaysZ, NStr[nn], flex) OPSDMOD.MatGenRCB(fpc, Ec, fy, E0, bsteel) # OPSDMOD.GeomTransGen(ColTransfType,XBD=[min(XBDims[:,0]),min(XBDims[:,1])],\ # ZBD=[min(ZBDims[:,0]),min(ZBDims[:,1])],\ # ColD=[min(ColDims[:,0]),min(ColDims[:,1])]) OPSDMOD.GeomTransGen( ColTransfType, ColD=[min(ColDims[:, 0]), min(ColDims[:, 1])]) # OPSDMOD.GeomTransGen(ColTransfType) if flex in ('Y', 'YES', 'Yes', 'yES', 'yes', 'y'): # Interface elements generation for foundation flexibility considerations. # ========================================================================= # Materials generation: stiffness constants accounting for soil flexibility. # --------------------------------------------------------------------------- OPSDMOD.FoundFlexMaterials(NbaysX[mm],NbaysZ,XbayL,ZbayL,Sxs,Vso[oo],gamma_soil,nu_soil,B,L,Re,\ D=0,omega_soil=0,analtype='lat') # Zero-Length elements creation for connecting base nodes. OPSDMOD.FoundFlexZLElements(NbaysX[mm], NbaysZ, XbayL, ZbayL, B, L, Re) OPSDMOD.ElementGen(NbaysX[mm],NbaysZ,XbayL,ZbayL,NStr[nn],StoryH,XBDims,ZBDims,\ ColDims,BeamEffFact,ColEffFact,Ec,fy,EMs,\ XBreinf,ZBreinf,Colreinf,N=5,rec=0.0654,nuconc=0.2,dbar=0.025) [Wx,MassInputMatr] = \ OPSDMOD.LumpedMassGen(NbaysX[mm],NbaysZ,XBDims,ZBDims,ColDims,gamma_conc,g,XbayL,ZbayL,NStr[nn],StoryH,Qsd,flex) W = sum(Wx) # [kN] total weight of the building # GRAVITY LOADS APPLIED TO MODEL ACCORDINGO TO ASCE4117 # ====================================================== OPSDMOD.DeadLoadGen(NbaysX[mm], NbaysZ, NStr[nn], XBDims, ZBDims, ColDims, gamma_conc) OPSDMOD.SuperDeadLoadGen(NbaysX[mm], NbaysZ, NStr[nn], XbayL, ZbayL, Qsd) OPSDMOD.LiveLoadGen(NbaysX[mm], NbaysZ, NStr[nn], XbayL, ZbayL, 0.25 * Ql, 0.25 * Qlr) # GRAVITY-LOADS-CASE ANALYSIS. # ============================ ops.system('ProfileSPD') ops.constraints('Transformation') ops.numberer('RCM') ops.test('NormDispIncr', 1.0e-4, 100) ops.algorithm('KrylovNewton') ops.integrator('LoadControl', 1) ops.analysis('Static') ops.analyze(1) # ================== # PUSHOVER ANALYSIS # ================== # Lateral Force used for analysis # -------------------------------- # Using functions from ASCE716Seismic Module. (_,_,_,_,_,_,_,_,_,_,_,FxF,_,_,_) = \ ASCE716.ELFP(Sxs,Sx1,Vso[oo],Wx,R,Ie,hx,StrType,Teff[ii]) # Aplication of forces to the model. # ---------------------------------- ops.loadConst('-time', 0.0) MdeShape = OPSDMOD.POForceGen(NStr[nn], FxF, dirs[ii], flex) # ============================================= # First Execution of the analysis and output results. # ============================================= (results2,dtg2,tgfactor2) = \ OPSDAN.POAnalysisProc(lon,lat,Vso[oo],SHL,NbaysX[mm],NbaysZ,\ NStr[nn],StoryH,R,Ie,BldTypCo,BldTypCm,\ T[0,ii],W,dirs[ii],flex,\ DispIncr=0,beta=0.05,TL=8.,Tf=6.0,Npts=500,Vy=0,Te=Teff[ii]) # [Disp,Force]. # ===================================================== # Determining the "exact" values of Vy # and calculation of effective fundamental period for NSP # ===================================================== (Delta_y, V_y, Delta_d, V_d, Ke, alpha1, alpha2) = \ ASCE4117.IFDC(dtg1,results2) Ki = Mast[ii] * 4 * np.pi**2 / T[ 0, ii]**2 # [kN/m] elastic lateral stiffness of the building. Teff[ii] = T[0, ii] * ( Ki / Ke )**0.5 # [s] effctive fundamental period of building. ttime = timer() - time_o print(f'Elapsed Time {round(ttime/60,2)} [m]') plt.figure() plt.plot(results2[:, 0], results2[:, 1]) plt.grid() print('The mode shape is:') print(MdeShape) return (results1, results2), (dtg1, dtg2), (tgfactor1, tgfactor2), (tgfactor1 * dtg1, tgfactor2 * dtg2)
def test_PortalFrame2d(): # set some properties print("================================================") print("PortalFrame2d.py: Verification 2d Elastic Frame") print(" - eigenvalue and static pushover analysis") ops.wipe() ops.model('Basic', '-ndm', 2) # properties # units kip, ft numBay = 2 numFloor = 7 bayWidth = 360.0 storyHeights = [162.0, 162.0, 156.0, 156.0, 156.0, 156.0, 156.0] E = 29500.0 massX = 0.49 M = 0. coordTransf = "Linear" # Linear, PDelta, Corotational massType = "-lMass" # -lMass, -cMass beams = [ 'W24X160', 'W24X160', 'W24X130', 'W24X130', 'W24X110', 'W24X110', 'W24X110' ] eColumn = [ 'W14X246', 'W14X246', 'W14X246', 'W14X211', 'W14X211', 'W14X176', 'W14X176' ] iColumn = [ 'W14X287', 'W14X287', 'W14X287', 'W14X246', 'W14X246', 'W14X211', 'W14X211' ] columns = [eColumn, iColumn, eColumn] WSection = { 'W14X176': [51.7, 2150.], 'W14X211': [62.1, 2670.], 'W14X246': [72.3, 3230.], 'W14X287': [84.4, 3910.], 'W24X110': [32.5, 3330.], 'W24X130': [38.3, 4020.], 'W24X160': [47.1, 5120.] } nodeTag = 1 # procedure to read def ElasticBeamColumn(eleTag, iNode, jNode, sectType, E, transfTag, M, massType): found = 0 prop = WSection[sectType] A = prop[0] I = prop[1] ops.element('elasticBeamColumn', eleTag, iNode, jNode, A, E, I, transfTag, '-mass', M, massType) # add the nodes # - floor at a time yLoc = 0. for j in range(0, numFloor + 1): xLoc = 0. for i in range(0, numBay + 1): ops.node(nodeTag, xLoc, yLoc) xLoc += bayWidth nodeTag += 1 if j < numFloor: storyHeight = storyHeights[j] yLoc += storyHeight # fix first floor ops.fix(1, 1, 1, 1) ops.fix(2, 1, 1, 1) ops.fix(3, 1, 1, 1) #rigid floor constraint & masses nodeTagR = 5 nodeTag = 4 for j in range(1, numFloor + 1): for i in range(0, numBay + 1): if nodeTag != nodeTagR: ops.equalDOF(nodeTagR, nodeTag, 1) else: ops.mass(nodeTagR, massX, 1.0e-10, 1.0e-10) nodeTag += 1 nodeTagR += numBay + 1 # add the columns # add column element ops.geomTransf(coordTransf, 1) eleTag = 1 for j in range(0, numBay + 1): end1 = j + 1 end2 = end1 + numBay + 1 thisColumn = columns[j] for i in range(0, numFloor): secType = thisColumn[i] ElasticBeamColumn(eleTag, end1, end2, secType, E, 1, M, massType) end1 = end2 end2 += numBay + 1 eleTag += 1 # add beam elements for j in range(1, numFloor + 1): end1 = (numBay + 1) * j + 1 end2 = end1 + 1 secType = beams[j - 1] for i in range(0, numBay): ElasticBeamColumn(eleTag, end1, end2, secType, E, 1, M, massType) end1 = end2 end2 = end1 + 1 eleTag += 1 # calculate eigenvalues & print results numEigen = 7 eigenValues = ops.eigen(numEigen) PI = 2 * asin(1.0) # # apply loads for static analysis & perform analysis # ops.timeSeries('Linear', 1) ops.pattern('Plain', 1, 1) ops.load(22, 20.0, 0., 0.) ops.load(19, 15.0, 0., 0.) ops.load(16, 12.5, 0., 0.) ops.load(13, 10.0, 0., 0.) ops.load(10, 7.5, 0., 0.) ops.load(7, 5.0, 0., 0.) ops.load(4, 2.5, 0., 0.) ops.integrator('LoadControl', 1.0) ops.algorithm('Linear') ops.analysis('Static') ops.analyze(1) # determine PASS/FAILURE of test ok = 0 # # print pretty output of comparsions # # SAP2000 SeismoStruct comparisonResults = [[ 1.2732, 0.4313, 0.2420, 0.1602, 0.1190, 0.0951, 0.0795 ], [1.2732, 0.4313, 0.2420, 0.1602, 0.1190, 0.0951, 0.0795]] print("\n\nPeriod Comparisons:") print('{:>10}{:>15}{:>15}{:>15}'.format('Period', 'OpenSees', 'SAP2000', 'SeismoStruct')) #formatString {%10s%15.5f%15.4f%15.4f} for i in range(0, numEigen): lamb = eigenValues[i] period = 2 * PI / sqrt(lamb) print('{:>10}{:>15.5f}{:>15.4f}{:>15.4f}'.format( i + 1, period, comparisonResults[0][i], comparisonResults[1][i])) resultOther = comparisonResults[0][i] if abs(period - resultOther) > 9.99e-5: ok = -1 # print table of camparsion # Parameter SAP2000 SeismoStruct comparisonResults = [[ "Disp Top", "Axial Force Bottom Left", "Moment Bottom Left" ], [1.45076, 69.99, 2324.68], [1.451, 70.01, 2324.71]] tolerances = [9.99e-6, 9.99e-3, 9.99e-3] print("\n\nSatic Analysis Result Comparisons:") print('{:>30}{:>15}{:>15}{:>15}'.format('Parameter', 'OpenSees', 'SAP2000', 'SeismoStruct')) for i in range(3): response = ops.eleResponse(1, 'forces') if i == 0: result = ops.nodeDisp(22, 1) elif i == 1: result = abs(response[1]) else: result = response[2] print('{:>30}{:>15.3f}{:>15.2f}{:>15.2f}'.format( comparisonResults[0][i], result, comparisonResults[1][i], comparisonResults[2][i])) resultOther = comparisonResults[1][i] tol = tolerances[i] if abs(result - resultOther) > tol: ok = -1 print("failed-> ", i, abs(result - resultOther), tol) assert ok == 0
*wallnodes) # create constraint object ops.constraints('Plain') # create numberer object ops.numberer('Plain') # create convergence test object ops.test('PFEM', 1e-5, 1e-5, 1e-5, 1e-5, 1e-5, 1e-5, 10, 3, 1, 2) # create algorithm object ops.algorithm('Newton') # create integrator object ops.integrator('PFEM', 0.5, 0.25) # create SOE object ops.system('PFEM') # ops.system('PFEM', '-mumps) Linux version can use mumps # create analysis object ops.analysis('PFEM', dtmax, dtmin, b2) # analysis while ops.getTime() < totaltime: # analysis if ops.analyze() < 0: break
def run_sensitivity_analysis(ctrlNode, dof, baseNode, SensParam, steps=500, IOflag=False): """ Run load-control sensitivity analysis """ ops.wipeAnalysis() start_time = time.time() title("Running Load-Control Sensitivity Analysis ...") ops.system("BandGeneral") ops.numberer("RCM") ops.constraints("Transformation") ops.test("NormDispIncr", 1.0E-12, 10, 3) ops.algorithm("Newton") # KrylovNewton ops.integrator("LoadControl", 1 / steps) ops.analysis("Static") ops.sensitivityAlgorithm( "-computeAtEachStep" ) # automatically compute sensitivity at the end of each step outputs = { "time": np.array([]), "disp": np.array([]), "force": np.array([]), } for sens in SensParam: outputs[f"sensDisp_{sens}"] = np.array([]), for i in range(steps): ops.reactions() if IOflag: print( f"Single Cycle Response: Step #{i}, Node #{ctrlNode}: {ops.nodeDisp(ctrlNode, dof):.3f} {LunitTXT} / {-ops.nodeReaction(baseNode, dof):.2f} {FunitTXT}." ) ops.analyze(1) tCurrent = ops.getTime() outputs["time"] = np.append(outputs["time"], tCurrent) outputs["disp"] = np.append(outputs["disp"], ops.nodeDisp(ctrlNode, dof)) outputs["force"] = np.append(outputs["force"], -ops.nodeReaction(baseNode, dof)) for sens in SensParam: # sensDisp(patternTag, paramTag) outputs[f"sensDisp_{sens}"] = np.append( outputs[f"sensDisp_{sens}"], ops.sensNodeDisp(ctrlNode, dof, sens)) title("Sensitvity Analysis Completed!") print( f"Analysis elapsed time is {(time.time() - start_time):.3f} seconds.\n" ) return outputs
def Analysis_Proc(Num: int, Node: int, dof: int, Dincr: float): ''' brief KrylovNewton → Newton -SecantNewton → ModifiedNewton → NewtonWithLineSearch → BGFS → Broyden\n pararm Num the number of analyze step\n return analyze if successful return 0 if NOT successful return < 0\n ''' for step in range(1, Num + 1): logger.info("No. %d of Cyclic. Anaylsis KrylovNewton..", step) ops.algorithm('KrylovNewton') ops.integrator("DisplacementControl", Node, dof, Dincr) ops.analysis("Static") ok = ops.analyze(1) if ok != 0: logger.info("No. %d of Cyclic. Anaylsis Trying SecantNewton ..", step) ops.algorithm('SecantNewton') ops.integrator("DisplacementControl", Node, dof, Dincr) ops.analysis("Static") ok = ops.analyze(1) if ok != 0: logger.info( "NO. %d of Cyclic. Anaylsis Trying NewtonLineSearch ..", step) ops.algorithm('NewtonLineSearch', True, False, True, False, 0.8, 1000, 0.1, 10.0) ops.integrator("DisplacementControl", Node, dof, Dincr) ops.analysis("Static") ok = ops.analyze(1) if ok != 0: logger.info("No. %d of Cyclic. Anaylsis Trying PeriodicNewton ..", step) ops.algorithm('PeriodicNewton') ops.integrator("DisplacementControl", Node, dof, Dincr) ops.analysis("Static") ok = ops.analyze(1) if ok != 0: logger.info( "NO. %d of Cyclic. Anaylsis Trying NewtonWithLineSearch ..", step) ops.algorithm('NewtonLineSearch') ops.integrator("DisplacementControl", Node, dof, Dincr) ops.analysis("Static") ok = ops.analyze(1) if ok != 0: logger.info("No. %d of Cyclic. Anaylsis Trying BFGS ..", step) ops.algorithm('BFGS', True, False, 10000000) ops.integrator("DisplacementControl", Node, dof, Dincr) ops.analysis("Static") ok = ops.analyze(1) if ok != 0: logger.info("No. %d of Cyclic. Anaylsis Trying Broyden ..", step) ops.algorithm('Broyden') ops.integrator("DisplacementControl", Node, dof, Dincr) ops.analysis("Static") ok = ops.analyze(1) if ok != 0: logger.info("No. $step of Cyclic. Analysis Convergence Failure!")
# **************************************************************************** # GRAVITY ANALYSIS EXCECUTED ACCOUNING FOR LIVE, DEAD AND SUPERDEAD LOADS. # ======================================================================== OPSDMOD.DeadLoadGen(NbaysX[0], NbaysZ, NStr[0], XBDims, ZBDims, ColDims, gamma_conc) OPSDMOD.SuperDeadLoadGen(NbaysX[0], NbaysZ, NStr[0], XbayL, ZbayL, Qsd) OPSDMOD.LiveLoadGen(NbaysX[0], NbaysZ, NStr[0], XbayL, ZbayL, Ql, Qlr) # GRAVITY-LOADS-CASE ANALYSIS. # ============================ ops.system('ProfileSPD') ops.constraints('Transformation') ops.numberer('RCM') ops.test('NormDispIncr', 1.0e-4, 100) ops.algorithm('KrylovNewton') ops.integrator('LoadControl', 1) ops.analysis('Static') ops.analyze(1) # Vertical reactions Calculation for verification. # ------------------------------------------------ ops.reactions() YReact = 0 for i in range((NbaysX[0] + 1) * (NbaysZ + 1)): if flex in ('Y', 'YES', 'Yes', 'yES', 'yes', 'y'): YReact += ops.nodeReaction(99000 + i + 1, 2) else: YReact += ops.nodeReaction(i + 1, 2) print('>>> Gravity loads applied...') # ========================================================================== # MODAL ANALYSIS FOR DETERMINING FUNDAMENTAL PERIOD AND ITS DIRECTION.
tf = 0.2 * s fr = 10 * Hz prd = 1 / fr ops.timeSeries('Trig', 1, ti, tf, prd) # https://openseespydoc.readthedocs.io/en/latest/src/pathTs.html ops.pattern('UniformExcitation', 1, 1, '-accel', 1) # https://openseespydoc.readthedocs.io/en/latest/src/uniformExcitation.html # amortiguamiento de rayleigh ops.rayleigh(*setRayParam(0.05, 0.05, 0.2, 20)) # analysis commands ops.constraints('Plain') ops.numberer('Plain') ops.system('UmfPack') ops.algorithm('Linear') ops.integrator('Newmark', 0.5, 0.25) ops.analysis('Transient') # analisis # ops.analyze(400,0.001) ops.start() for i in range(400): ops.analyze(1, 0.001) print(i) ops.stop() # Grafico de la deformada fig = plt.figure(figsize=(25, 5)) opsv.plot_defo(500) plt.show()
dt = 0.01 # time step for input ground motion GMfatt = 1.0 # data in input file is in g Unifts -- ACCELERATION TH maxNumIter = 10 op.timeSeries('Path', 2, '-dt', dt, '-filePath', GMfile, '-factor', GMfact) op.pattern('UniformExcitation', IDloadTag, GMdirection, '-accel', 2) op.wipeAnalysis() op.constraints('Transformation') op.numberer('Plain') op.system('BandGeneral') op.test('EnergyIncr', Tol, maxNumIter) op.algorithm('ModifiedNewton') NewmarkGamma = 0.5 NewmarkBeta = 0.25 op.integrator('Newmark', NewmarkGamma, NewmarkBeta) op.analysis('Transient') DtAnalysis = 0.01 # time-step Dt for lateral analysis TmaxAnalysis = 10.0 # maximum duration of ground-motion analysis Nsteps = int(TmaxAnalysis / DtAnalysis) ok = op.analyze(Nsteps, DtAnalysis) tCurrent = op.getTime() # for gravity analysis, load control is fine, 0.1 is the load factor increment (http://opensees.berkeley.edu/wiki/index.php/Load_Control) test = { 1: 'NormDispIncr',
def get_multi_pile_m( pile_layout, cap_edge=0, cap_thickness=2, pile_z0=-2.5, pile_z1=-30, pile_d=2, m0=7500000, top_f=0.0, top_h=0.0, top_m=0.0 ): if cap_edge == 0: if pile_d <= 1: cap_edge = max(0.25, 0.5 * pile_d) else: cap_edge = max(0.5, 0.3 * pile_d) cap_w = max(pile_layout[0]) - min(pile_layout[0]) + pile_d + cap_edge * 2 cap_l = max(pile_layout[1]) - min(pile_layout[1]) + pile_d + cap_edge * 2 top_f += cap_w * cap_l * cap_thickness * 26e3 # 承台自重 top_f += (cap_w * cap_l) * (-pile_z0 - cap_thickness) * 15e3 # 盖梁重量 pile_rows = len(pile_layout[1]) # 桩排数 top_f /= pile_rows # 桩顶力分配 top_h /= pile_rows # 桩顶水平力分配 top_m /= pile_rows # 桩顶弯矩分配 cap_i = cap_l * cap_thickness ** 3 / 12 / pile_rows # 承台横向刚度 pile_h = pile_z0 - pile_z1 pile_a = np.pi * (pile_d / 2) ** 2 pile_i = np.pi * pile_d ** 4 / 64 pile_b1 = 0.9 * (1.5 + 0.5 / pile_d) * 1 * pile_d # 建立模型 ops.wipe() ops.model('basic', '-ndm', 2, '-ndf', 3) # 建立节点 cap_bot = pile_z0 # ops.node(1, 0, cap_top) # 承台竖向节点 if 0 not in pile_layout[0]: ops.node(2, 0, cap_bot) # 建立桩基节点 node_z = np.linspace(pile_z0, pile_z1, elem_num + 1) for i, j in enumerate(pile_layout[0]): node_start = 100 + i * 300 for m, n in enumerate(node_z): ops.node(node_start + m + 1, j, n) ops.node(node_start + m + 151, j, n) nodes = {} for i in ops.getNodeTags(): nodes[i] = ops.nodeCoord(i) # 建立约束 for i, j in enumerate(pile_layout[0]): node_start = 100 + i * 300 for m, n in enumerate(node_z): ops.fix(node_start + m + 151, 1, 1, 1) if n == node_z[-1]: ops.fix(node_start + m + 1, 1, 1, 1) # 建立材料 for i in range(len(node_z)): pile_depth = i * (pile_h / elem_num) pile_depth_nominal = 10 if pile_depth <= 10 else pile_depth soil_k = m0 * pile_depth_nominal * pile_b1 * (pile_h / elem_num) if i == 0: ops.uniaxialMaterial('Elastic', 1 + i, soil_k / 2) continue ops.uniaxialMaterial('Elastic', 1 + i, soil_k) # 装配 ops.geomTransf('Linear', 1) # 建立单元 if len(pile_layout[0]) > 1: # 承台横向单元 cap_nodes = [] for i in nodes: if nodes[i][1] == cap_bot: if len(cap_nodes) == 0: cap_nodes.append(i) elif nodes[i][0] != nodes[cap_nodes[-1]][0]: cap_nodes.append(i) cap_nodes = sorted(cap_nodes, key=lambda x: nodes[x][0]) for i, j in enumerate(cap_nodes[:-1]): ops.element('elasticBeamColumn', 10 + i, j, cap_nodes[i+1], cap_l * cap_thickness, 3e10, cap_i, 1) pile_elem = [] for i, j in enumerate(pile_layout[0]): # 桩基单元 node_start = 100 + i * 300 pile_elem_i = [] for m, n in enumerate(node_z): if n != pile_z1: ops.element('elasticBeamColumn', node_start + m + 1, node_start + m + 1, node_start + m + 2, pile_a, 3e10, pile_i, 1) pile_elem_i.append(node_start + m + 1) ops.element('zeroLength', node_start + m + 151, node_start + m + 151, node_start + m + 1, '-mat', 1 + m, '-dir', 1) pile_elem.append(pile_elem_i) ops.timeSeries('Linear', 1) ops.pattern('Plain', 1, 1) for i in nodes: if nodes[i] == [0, pile_z0]: ops.load(i, -top_h, -top_f, top_m) # 加载 ops.system('BandGeneral') ops.numberer('Plain') ops.constraints('Plain') ops.integrator('LoadControl', 0.01) ops.test('EnergyIncr', 1e-6, 200) ops.algorithm('Newton') ops.analysis('Static') ops.analyze(100) node_disp = {} for i in ops.getNodeTags(): node_disp[i] = [j * 1000 for j in ops.nodeDisp(i)] elem_m = {} for i in pile_elem: for j in i: elem_m[j] = [k / 1000 for k in ops.eleForce(j)] plt.figure() for i, j in enumerate(pile_elem): plt.subplot(f'1{len(pile_elem)}{i+1}') if i == 0: plt.ylabel('Pile Depth(m)') node_disp_x = [] for m, n in enumerate(j): node_1 = ops.eleNodes(n)[0] if m == 0: plt.plot([0, node_disp[node_1][0]], [nodes[node_1][1], nodes[node_1][1]], linewidth=1.5, color='grey') else: plt.plot([0, node_disp[node_1][0]], [nodes[node_1][1], nodes[node_1][1]], linewidth=0.7, color='grey') node_disp_x.append(node_disp[node_1][0]) for m, n in enumerate(j): node_1 = ops.eleNodes(n)[0] if abs(node_disp[node_1][0]) == max([abs(i) for i in node_disp_x]): side = 1 if node_disp[node_1][0] > 0 else -1 plt.annotate(f'{node_disp[node_1][0]:.1f} mm', xy=(node_disp[node_1][0], nodes[node_1][1]), xytext=(0.4 + 0.1 * side, 0.5), textcoords='axes fraction', bbox=dict(boxstyle="round", fc="0.8"), arrowprops=dict(arrowstyle='->', connectionstyle=f"arc3,rad={side * 0.3}")) break plt.plot([0, 0], [node_z[0], node_z[-1]], linewidth=1.5, color='dimgray') plt.plot(node_disp_x, node_z[:-1], linewidth=1.5, color='midnightblue') plt.xlabel(f'Displacement_{i+1} (mm)') plt.show() plt.figure() for i, j in enumerate(pile_elem): plt.subplot(f'1{len(pile_elem)}{i + 1}') if i == 0: plt.ylabel('Pile Depth(m)') elem_mi = [] for m, n in enumerate(j): node_1 = ops.eleNodes(n)[0] if m == 0: plt.plot([0, elem_m[n][2]], [nodes[node_1][1], nodes[node_1][1]], linewidth=1.5, color='grey') else: plt.plot([0, elem_m[n][2]], [nodes[node_1][1], nodes[node_1][1]], linewidth=0.7, color='grey') elem_mi.append(elem_m[n][2]) for m, n in enumerate(j): node_1 = ops.eleNodes(n)[0] if abs(elem_m[n][2]) == max([abs(i) for i in elem_mi]): side = 1 if elem_m[n][2] > 0 else -1 plt.annotate(f'{elem_m[n][2]:.1f} kN.m', xy=(elem_m[n][2], nodes[node_1][1]), xytext=(0.4 + 0.1 * side, 0.5), textcoords='axes fraction', bbox=dict(boxstyle="round", fc="0.8"), arrowprops=dict(arrowstyle='->', connectionstyle=f"arc3,rad={side * 0.3}")) break plt.plot([0, 0], [node_z[0], node_z[-1]], linewidth=1.5, color='dimgray') plt.plot(elem_mi, node_z[:-1], linewidth=1.5, color='brown') plt.xlabel(f'Moment_{i + 1} (kN.m)') plt.show() return pile_elem, elem_m
def test_ElasticFrame(): # # some parameter # PI = 2.0 * asin(1.0) g = 386.4 ft = 12.0 Load1 = 1185.0 Load2 = 1185.0 Load3 = 970.0 # floor masses m1 = Load1 / (4 * g) # 4 nodes per floor m2 = Load2 / (4 * g) m3 = Load3 / (4 * g) # floor distributed loads w1 = Load1 / (90 * ft) # frame 90 ft long w2 = Load2 / (90 * ft) w3 = Load3 / (90 * ft) # ------------------------------ # Start of model generation # ------------------------------ # Remove existing model ops.wipe() # Create ModelBuilder (with two-dimensions and 2 DOF/node) ops.model('BasicBuilder', '-ndm', 2, '-ndf', 3) # Create nodes # ------------ # Create nodes & add to Domain - command: node nodeId xCrd yCrd <-mass massX massY massRz> # NOTE: mass in optional ops.node(1, 0.0, 0.0) ops.node(2, 360.0, 0.0) ops.node(3, 720.0, 0.0) ops.node(4, 1080.0, 0.0) ops.node(5, 0.0, 162.0, '-mass', m1, m1, 0.0) ops.node(6, 360.0, 162.0, '-mass', m1, m1, 0.0) ops.node(7, 720.0, 162.0, '-mass', m1, m1, 0.0) ops.node(8, 1080.0, 162.0, '-mass', m1, m1, 0.0) ops.node(9, 0.0, 324.0, '-mass', m2, m2, 0.0) ops.node(10, 360.0, 324.0, '-mass', m2, m2, 0.0) ops.node(11, 720.0, 324.0, '-mass', m2, m2, 0.0) ops.node(12, 1080.0, 324.0, '-mass', m2, m2, 0.0) ops.node(13, 0.0, 486.0, '-mass', m3, m3, 0.0) ops.node(14, 360.0, 486.0, '-mass', m3, m3, 0.0) ops.node(15, 720.0, 486.0, '-mass', m3, m3, 0.0) ops.node(16, 1080.0, 486.0, '-mass', m3, m3, 0.0) # the boundary conditions - command: fix nodeID xResrnt? yRestrnt? rZRestrnt? ops.fix(1, 1, 1, 1) ops.fix(2, 1, 1, 1) ops.fix(3, 1, 1, 1) ops.fix(4, 1, 1, 1) # Define geometric transformations for beam-column elements ops.geomTransf('Linear', 1) # beams ops.geomTransf('PDelta', 2) # columns # Define elements # Create elastic beam-column - command: element elasticBeamColumn eleID node1 node2 A E Iz geomTransfTag # Define the Columns ops.element('elasticBeamColumn', 1, 1, 5, 75.6, 29000.0, 3400.0, 2) # W14X257 ops.element('elasticBeamColumn', 2, 5, 9, 75.6, 29000.0, 3400.0, 2) # W14X257 ops.element('elasticBeamColumn', 3, 9, 13, 75.6, 29000.0, 3400.0, 2) # W14X257 ops.element('elasticBeamColumn', 4, 2, 6, 91.4, 29000.0, 4330.0, 2) # W14X311 ops.element('elasticBeamColumn', 5, 6, 10, 91.4, 29000.0, 4330.0, 2) # W14X311 ops.element('elasticBeamColumn', 6, 10, 14, 91.4, 29000.0, 4330.0, 2) # W14X311 ops.element('elasticBeamColumn', 7, 3, 7, 91.4, 29000.0, 4330.0, 2) # W14X311 ops.element('elasticBeamColumn', 8, 7, 11, 91.4, 29000.0, 4330.0, 2) # W14X311 ops.element('elasticBeamColumn', 9, 11, 15, 91.4, 29000.0, 4330.0, 2) # W14X311 ops.element('elasticBeamColumn', 10, 4, 8, 75.6, 29000.0, 3400.0, 2) # W14X257 ops.element('elasticBeamColumn', 11, 8, 12, 75.6, 29000.0, 3400.0, 2) # W14X257 ops.element('elasticBeamColumn', 12, 12, 16, 75.6, 29000.0, 3400.0, 2) # W14X257 # Define the Beams ops.element('elasticBeamColumn', 13, 5, 6, 34.7, 29000.0, 5900.0, 1) # W33X118 ops.element('elasticBeamColumn', 14, 6, 7, 34.7, 29000.0, 5900.0, 1) # W33X118 ops.element('elasticBeamColumn', 15, 7, 8, 34.7, 29000.0, 5900.0, 1) # W33X118 ops.element('elasticBeamColumn', 16, 9, 10, 34.2, 29000.0, 4930.0, 1) # W30X116 ops.element('elasticBeamColumn', 17, 10, 11, 34.2, 29000.0, 4930.0, 1) # W30X116 ops.element('elasticBeamColumn', 18, 11, 12, 34.2, 29000.0, 4930.0, 1) # W30X116 ops.element('elasticBeamColumn', 19, 13, 14, 20.1, 29000.0, 1830.0, 1) # W24X68 ops.element('elasticBeamColumn', 20, 14, 15, 20.1, 29000.0, 1830.0, 1) # W24X68 ops.element('elasticBeamColumn', 21, 15, 16, 20.1, 29000.0, 1830.0, 1) # W24X68 # Define loads for Gravity Analysis # --------------------------------- #create a Linear TimeSeries (load factor varies linearly with time): command timeSeries Linear tag ops.timeSeries('Linear', 1) # Create a Plain load pattern with a linear TimeSeries: # command pattern Plain tag timeSeriesTag { loads } ops.pattern('Plain', 1, 1) ops.eleLoad('-ele', 13, 14, 15, '-type', '-beamUniform', -w1) ops.eleLoad('-ele', 16, 17, 18, '-type', '-beamUniform', -w2) ops.eleLoad('-ele', 19, 20, 21, '-type', '-beamUniform', -w3) # --------------------------------- # Create Analysis for Gravity Loads # --------------------------------- # Create the system of equation, a SPD using a band storage scheme ops.system('BandSPD') # Create the DOF numberer, the reverse Cuthill-McKee algorithm ops.numberer('RCM') # Create the constraint handler, a Plain handler is used as h**o constraints ops.constraints('Plain') # Create the integration scheme, the LoadControl scheme using steps of 1.0 ops.integrator('LoadControl', 1.0) # Create the solution algorithm, a Linear algorithm is created ops.test('NormDispIncr', 1.0e-10, 6) ops.algorithm('Newton') # create the analysis object ops.analysis('Static') # --------------------------------- # Perform Gravity Analysis # --------------------------------- ops.analyze(1) # print "node 5: nodeDisp 5" # print "node 6: nodeDisp 6" # print "node 7: nodeDisp 7" # print "node 8: nodeDisp 8" # print "node 9: nodeDisp 9" # print "node 10: nodeDisp 10" # --------------------------------- # Check Equilibrium # --------------------------------- # invoke command to determine nodal reactions ops.reactions() node1Rxn = ops.nodeReaction( 1 ) # nodeReaction command returns nodal reactions for specified node in a list node2Rxn = ops.nodeReaction(2) node3Rxn = ops.nodeReaction(3) node4Rxn = ops.nodeReaction(4) inputedFy = -Load1 - Load2 - Load3 # loads added negative Fy diren to ele computedFx = node1Rxn[0] + node2Rxn[0] + node3Rxn[0] + node4Rxn[0] computedFy = node1Rxn[1] + node2Rxn[1] + node3Rxn[1] + node4Rxn[1] print("\nEqilibrium Check After Gravity:") print("SumX: Inputed: 0.0 + Computed:", computedFx, " = ", 0.0 + computedFx) print("SumY: Inputed: ", inputedFy, " + Computed: ", computedFy, " = ", inputedFy + computedFy) # --------------------------------- # Lateral Load # --------------------------------- # gravity loads constant and time in domain to e 0.0 ops.loadConst('-time', 0.0) ops.timeSeries('Linear', 2) ops.pattern('Plain', 2, 2) ops.load(13, 220.0, 0.0, 0.0) ops.load(9, 180.0, 0.0, 0.0) ops.load(5, 90.0, 0.0, 0.0) # --------------------------------- # Create Recorder # --------------------------------- #recorder Element -file EleForces.out -ele 1 4 7 10 forces # --------------------------------- # Perform Lateral Analysis # --------------------------------- ops.analyze(1) # print "node 5: nodeDisp 5" # print "node 6: nodeDisp 6" # print "node 7: nodeDisp 7" # print "node 8: nodeDisp 8" # print "node 9: nodeDisp 9" # print "node 10: nodeDisp 10" # --------------------------------- # Check Equilibrium # --------------------------------- ops.reactions() node1Rxn = ops.nodeReaction( 1 ) # =nodeReaction( command returns nodal reactions for specified node in a list node2Rxn = ops.nodeReaction(2) node3Rxn = ops.nodeReaction(3) node4Rxn = ops.nodeReaction(4) inputedFx = 220.0 + 180.0 + 90.0 computedFx = node1Rxn[0] + node2Rxn[0] + node3Rxn[0] + node4Rxn[0] computedFy = node1Rxn[1] + node2Rxn[1] + node3Rxn[1] + node4Rxn[1] print("\nEqilibrium Check After Lateral Loads:") print("SumX: Inputed: ", inputedFx, " + Computed: ", computedFx, " = ", inputedFx + computedFx) print("SumY: Inputed: ", inputedFy, " + Computed: ", computedFy, " = ", inputedFy + computedFy) # print ele information for columns at base #print ele 1 4 7 10 # --------------------------------- # Check Eigenvalues # --------------------------------- eigenValues = ops.eigen(5) print("\nEigenvalues:") eigenValue = eigenValues[0] T1 = 2 * PI / sqrt(eigenValue) print("T1 = ", T1) eigenValue = eigenValues[1] T2 = 2 * PI / sqrt(eigenValue) print("T2 = ", T2) eigenValue = eigenValues[2] T3 = 2 * PI / sqrt(eigenValue) print("T3 = ", T3) eigenValue = eigenValues[3] T4 = 2 * PI / sqrt(eigenValue) print("T4 = ", T4) eigenValue = eigenValues[4] T5 = 2 * PI / sqrt(eigenValue) print("T5 = ", T5) assert abs(T1 - 1.0401120938612862) < 1e-12 and abs( T2 - 0.3526488583606463 ) < 1e-12 and abs(T3 - 0.1930409642350476) < 1e-12 and abs( T4 - 0.15628823050715784) < 1e-12 and abs(T5 - 0.13080166151268388) < 1e-12 #recorder Node -file eigenvector.out -nodeRange 5 16 -dof 1 2 3 eigen 0 #record print("==========================")
op.recorder('Element', '-file', 'Data-4-inelasticFiber/DefoColSec1.out', '-time', '-ele', 1, 2, 'section', 1, 'deformation') #op.recorder('Element', '-file', 'Data-4-inelasticFiber/DCol.out','-time', '-ele', 1, 'deformations') #defining gravity loads WzBeam = Weight / LBeam op.timeSeries('Linear', 1) op.pattern('Plain', 1, 1) op.eleLoad('-ele', 3, '-type', '-beamUniform', -WzBeam, 0.0, 0.0) #op.load(2, 0.0, -PCol, 0.0) Tol = 1e-8 # convergence tolerance for test NstepGravity = 10 DGravity = 1 / NstepGravity op.integrator('LoadControl', DGravity) # determine the next time step for an analysis op.numberer( 'Plain' ) # renumber dof's to minimize band-width (optimization), if you want to op.system('BandGeneral' ) # how to store and solve the system of equations in the analysis op.constraints('Plain') # how it handles boundary conditions op.test( 'NormDispIncr', Tol, 6 ) # determine if convergence has been achieved at the end of an iteration step op.algorithm( 'Newton' ) # use Newton's solution algorithm: updates tangent stiffness at every iteration op.analysis('Static') # define type of analysis static or transient op.analyze(NstepGravity) # apply gravity
def test_Truss(): # remove existing model ops.wipe() # set modelbuilder ops.model('basic', '-ndm', 2, '-ndf', 2) # create nodes ops.node(1, 0.0, 0.0) ops.node(2, 144.0, 0.0) ops.node(3, 168.0, 0.0) ops.node(4, 72.0, 96.0) # set boundary condition ops.fix(1, 1, 1) ops.fix(2, 1, 1) ops.fix(3, 1, 1) # define materials ops.uniaxialMaterial("Elastic", 1, 3000.0) # define elements ops.element("Truss", 1, 1, 4, 10.0, 1) ops.element("Truss", 2, 2, 4, 5.0, 1) ops.element("Truss", 3, 3, 4, 5.0, 1) # create TimeSeries ops.timeSeries("Linear", 1) # create a plain load pattern ops.pattern("Plain", 1, 1) # Create the nodal load - command: load nodeID xForce yForce ops.load(4, 100.0, -50.0) # ------------------------------ # Start of analysis generation # ------------------------------ # create SOE ops.system("BandSPD") # create DOF number ops.numberer("Plain") # create constraint handler ops.constraints("Plain") # create integrator ops.integrator("LoadControl", 1.0) # create algorithm ops.algorithm("Linear") # create analysis object ops.analysis("Static") # perform the analysis ops.analyze(1) ux = ops.nodeDisp(4, 1) uy = ops.nodeDisp(4, 2) assert abs(ux - 0.53009277713228375450) < 1e-12 and abs( uy + 0.17789363846931768864) < 1e-12
for i in range(nNode): ops.node(i+1, *Node[i][1:]) # construccion de elementos for i in range(nEle): if (Ele[i][0] == 1): ops.element('quad', i+1, *Ele[i][2:], B, 'PlaneStress', Ele[i][0]) # condiciones de frontera boundFix(nNode, Node) ops.timeSeries('Linear',1) ops.pattern('Plain',1,1) fx = 0 fy = -10*kN ops.load(2, fx, fy) #for i in range(nNode): # if (Node[i][0] == 2): # ops.load(i+1, fx, fy) ops.system('FullGeneral') # probar otros solvers: 'UmfPack' 'SparseSYM' ops.numberer('Plain') ops.constraints('Plain') ops.integrator('LoadControl',1) ops.algorithm('Linear') ops.analysis('Static') ops.analyze(1) # Desplazamiento disp = ops.nodeDisp(2,2) print(disp)
def RunAnalysis(): AnalysisType = 'Pushover' # Pushover Gravity ## ------------------------------ ## Start of model generation ## ----------------------------- # remove existing model ops.wipe() # set modelbuilder ops.model('basic', '-ndm', 2, '-ndf', 3) import math ############################################ ### Units and Constants ################### ############################################ inch = 1 kip = 1 sec = 1 # Dependent units sq_in = inch * inch ksi = kip / sq_in ft = 12 * inch # Constants g = 386.2 * inch / (sec * sec) pi = math.acos(-1) ####################################### ##### Dimensions ####################################### # Dimensions Input H_story = 10.0 * ft W_bayX = 16.0 * ft W_bayY_ab = 5.0 * ft + 10.0 * inch W_bayY_bc = 8.0 * ft + 4.0 * inch W_bayY_cd = 5.0 * ft + 10.0 * inch # Calculated dimensions W_structure = W_bayY_ab + W_bayY_bc + W_bayY_cd ################ ### Material ################ # Steel02 Material matTag = 1 matConnAx = 2 matConnRot = 3 Fy = 60.0 * ksi # Yield stress Es = 29000.0 * ksi # Modulus of Elasticity of Steel v = 0.2 # Poisson's ratio Gs = Es / (1 + v) # Shear modulus b = 0.10 # Strain hardening ratio params = [18.0, 0.925, 0.15] # R0,cR1,cR2 R0 = 18.0 cR1 = 0.925 cR2 = 0.15 a1 = 0.05 a2 = 1.00 a3 = 0.05 a4 = 1.0 sigInit = 0.0 alpha = 0.05 ops.uniaxialMaterial('Steel02', matTag, Fy, Es, b, R0, cR1, cR2, a1, a2, a3, a4, sigInit) # ################## # ## Sections # ################## colSecTag1 = 1 colSecTag2 = 2 beamSecTag1 = 3 beamSecTag2 = 4 beamSecTag3 = 5 # COMMAND: section('WFSection2d', secTag, matTag, d, tw, bf, tf, Nfw, Nff) ops.section('WFSection2d', colSecTag1, matTag, 10.5 * inch, 0.26 * inch, 5.77 * inch, 0.44 * inch, 15, 16) # outer Column ops.section('WFSection2d', colSecTag2, matTag, 10.5 * inch, 0.26 * inch, 5.77 * inch, 0.44 * inch, 15, 16) # Inner Column ops.section('WFSection2d', beamSecTag1, matTag, 8.3 * inch, 0.44 * inch, 8.11 * inch, 0.685 * inch, 15, 15) # outer Beam ops.section('WFSection2d', beamSecTag2, matTag, 8.2 * inch, 0.40 * inch, 8.01 * inch, 0.650 * inch, 15, 15) # Inner Beam ops.section('WFSection2d', beamSecTag3, matTag, 8.0 * inch, 0.40 * inch, 7.89 * inch, 0.600 * inch, 15, 15) # Inner Beam # Beam size - W10x26 Abeam = 7.61 * inch * inch IbeamY = 144. * (inch**4) # Inertia along horizontal axis IbeamZ = 14.1 * (inch**4) # inertia along vertical axis # BRB input data Acore = 2.25 * inch Aend = 10.0 * inch LR_BRB = 0.55 # ########################### # ##### Nodes # ########################### # Create All main nodes ops.node(1, 0.0, 0.0) ops.node(2, W_bayX, 0.0) ops.node(3, 2 * W_bayX, 0.0) ops.node(11, 0.0, H_story) ops.node(12, W_bayX, H_story) ops.node(13, 2 * W_bayX, H_story) ops.node(21, 0.0, 2 * H_story) ops.node(22, W_bayX, 2 * H_story) ops.node(23, 2 * W_bayX, 2 * H_story) ops.node(31, 0.0, 3 * H_story) ops.node(32, W_bayX, 3 * H_story) ops.node(33, 2 * W_bayX, 3 * H_story) # Beam Connection nodes ops.node(1101, 0.0, H_story) ops.node(1201, W_bayX, H_story) ops.node(1202, W_bayX, H_story) ops.node(1301, 2 * W_bayX, H_story) ops.node(2101, 0.0, 2 * H_story) ops.node(2201, W_bayX, 2 * H_story) ops.node(2202, W_bayX, 2 * H_story) ops.node(2301, 2 * W_bayX, 2 * H_story) ops.node(3101, 0.0, 3 * H_story) ops.node(3201, W_bayX, 3 * H_story) ops.node(3202, W_bayX, 3 * H_story) ops.node(3301, 2 * W_bayX, 3 * H_story) # ############### # Constraints # ############### ops.fix(1, 1, 1, 1) ops.fix(2, 1, 1, 1) ops.fix(3, 1, 1, 1) # ####################### # ### Elements # ####################### # ### Assign beam-integration tags ColIntTag1 = 1 ColIntTag2 = 2 BeamIntTag1 = 3 BeamIntTag2 = 4 BeamIntTag3 = 5 ops.beamIntegration('Lobatto', ColIntTag1, colSecTag1, 4) ops.beamIntegration('Lobatto', ColIntTag2, colSecTag2, 4) ops.beamIntegration('Lobatto', BeamIntTag1, beamSecTag1, 4) ops.beamIntegration('Lobatto', BeamIntTag2, beamSecTag2, 4) ops.beamIntegration('Lobatto', BeamIntTag3, beamSecTag3, 4) # Assign geometric transformation ColTransfTag = 1 BeamTranfTag = 2 ops.geomTransf('PDelta', ColTransfTag) ops.geomTransf('Linear', BeamTranfTag) # Assign Elements ############## # ## Add non-linear column elements ops.element('forceBeamColumn', 1, 1, 11, ColTransfTag, ColIntTag1, '-mass', 0.0) ops.element('forceBeamColumn', 2, 2, 12, ColTransfTag, ColIntTag2, '-mass', 0.0) ops.element('forceBeamColumn', 3, 3, 13, ColTransfTag, ColIntTag1, '-mass', 0.0) ops.element('forceBeamColumn', 11, 11, 21, ColTransfTag, ColIntTag1, '-mass', 0.0) ops.element('forceBeamColumn', 12, 12, 22, ColTransfTag, ColIntTag2, '-mass', 0.0) ops.element('forceBeamColumn', 13, 13, 23, ColTransfTag, ColIntTag1, '-mass', 0.0) ops.element('forceBeamColumn', 21, 21, 31, ColTransfTag, ColIntTag1, '-mass', 0.0) ops.element('forceBeamColumn', 22, 22, 32, ColTransfTag, ColIntTag2, '-mass', 0.0) ops.element('forceBeamColumn', 23, 23, 33, ColTransfTag, ColIntTag1, '-mass', 0.0) # ### Add linear main beam elements, along x-axis #element('elasticBeamColumn', 101, 1101, 1201, Abeam, Es, Gs, Jbeam, IbeamY, IbeamZ, beamTransfTag, '-mass', 0.0) ops.element('forceBeamColumn', 101, 1101, 1201, BeamTranfTag, BeamIntTag1, '-mass', 0.0) ops.element('forceBeamColumn', 102, 1202, 1301, BeamTranfTag, BeamIntTag1, '-mass', 0.0) ops.element('forceBeamColumn', 201, 2101, 2201, BeamTranfTag, BeamIntTag2, '-mass', 0.0) ops.element('forceBeamColumn', 202, 2202, 2301, BeamTranfTag, BeamIntTag2, '-mass', 0.0) ops.element('forceBeamColumn', 301, 3101, 3201, BeamTranfTag, BeamIntTag3, '-mass', 0.0) ops.element('forceBeamColumn', 302, 3202, 3301, BeamTranfTag, BeamIntTag3, '-mass', 0.0) # Assign constraints between beam end nodes and column nodes (RIgid beam column connections) ops.equalDOF(11, 1101, 1, 2, 3) ops.equalDOF(12, 1201, 1, 2, 3) ops.equalDOF(12, 1202, 1, 2, 3) ops.equalDOF(13, 1301, 1, 2, 3) ops.equalDOF(21, 2101, 1, 2, 3) ops.equalDOF(22, 2201, 1, 2, 3) ops.equalDOF(22, 2202, 1, 2, 3) ops.equalDOF(23, 2301, 1, 2, 3) ops.equalDOF(31, 3101, 1, 2, 3) ops.equalDOF(32, 3201, 1, 2, 3) ops.equalDOF(32, 3202, 1, 2, 3) ops.equalDOF(33, 3301, 1, 2, 3) AllNodes = ops.getNodeTags() massX = 0.49 for nodes in AllNodes: ops.mass(nodes, massX, massX, 0.00001) ################ ## Gravity Load ################ # create TimeSeries ops.timeSeries("Linear", 1) # create a plain load pattern ops.pattern("Plain", 1, 1) # Create the nodal load ops.load(11, 0.0, -5.0 * kip, 0.0) ops.load(12, 0.0, -6.0 * kip, 0.0) ops.load(13, 0.0, -5.0 * kip, 0.0) ops.load(21, 0., -5. * kip, 0.0) ops.load(22, 0., -6. * kip, 0.0) ops.load(23, 0., -5. * kip, 0.0) ops.load(31, 0., -5. * kip, 0.0) ops.load(32, 0., -6. * kip, 0.0) ops.load(33, 0., -5. * kip, 0.0) ############################### ### PUSHOVER ANALYSIS ############################### if (AnalysisType == "Pushover"): print("<<<< Running Pushover Analysis >>>>") # Create load pattern for pushover analysis # create a plain load pattern ops.pattern("Plain", 2, 1) ops.load(11, 1.61, 0.0, 0.0) ops.load(21, 3.22, 0.0, 0.0) ops.load(31, 4.83, 0.0, 0.0) ControlNode = 31 ControlDOF = 1 MaxDisp = 0.15 * H_story DispIncr = 0.1 NstepsPush = int(MaxDisp / DispIncr) Model = 'test' LoadCase = 'Pushover' dt = 0.2 opp.createODB(Model, LoadCase, Nmodes=3) ops.system("ProfileSPD") ops.numberer("Plain") ops.constraints("Plain") ops.integrator("DisplacementControl", ControlNode, ControlDOF, DispIncr) ops.algorithm("Newton") ops.test('NormUnbalance', 1e-8, 10) ops.analysis("Static") # analyze(NstepsPush) ops.analyze(100) print("Pushover analysis complete")