def get_prediction_job(cls, pid: Union[int, str]):
        with open(cls.DATA_FILES_FOLDER / "prediction_jobs.json", "r") as fh:
            prediction_jobs = json.load(fh, object_hook=prediction_job_decoder)

            out_dict = prediction_jobs[str(pid)]

            # Change the typ column to forecast_type normally done after query
            out_dict["forecast_type"] = out_dict.pop("typ")

        return PredictionJobDataClass(**out_dict)
    def get_prediction_jobs(cls):
        with open(cls.DATA_FILES_FOLDER / "prediction_jobs.json", "r") as fh:
            prediction_jobs = json.load(fh, object_hook=prediction_job_decoder)

        prediction_jobs_list = []
        for v in prediction_jobs.values():
            # Change the typ column to forecast_type normally done after query
            v["forecast_type"] = v.pop("typ")

            prediction_jobs_list.append(PredictionJobDataClass(**v))
        return prediction_jobs_list
示例#3
0
 def _build_prediction_job(self, pj_id, depends_on=None):
     return PredictionJobDataClass(
         id=pj_id,
         depends_on=depends_on,
         model="",
         forecast_type="",
         train_components=False,
         name="",
         lat=0,
         lon=0,
         resolution_minutes=0,
         horizon_minutes=0,
     )
    def test_prediction_job_from_dict_with_wind_columns(self):
        # Arrange
        pj_dict = {
            "id": 307,
            "turbine_type": "test",
            "n_turbines": 3.0,
            "hub_height": 20.0,
            "model": "xgb",
            "model_type_group": "xgb",
            "horizon_minutes": 2880,
            "resolution_minutes": 15,
            "train_components": 1,
            "name": "Neerijnen",
            "lat": 51.8336647,
            "lon": 5.2137814,
            "sid": "NrynRS_10-G_V12_P",
            "created": "2019-04-05 12:08:23",
            "description":
            "NrynRS_10-G_V12_P+NrynRS_10-G_V13_P+NrynRS_10-G_V14_P+NrynRS_10-G_V15_P+NrynRS_10-G_V16_P+NrynRS_10-G_V17_P+NrynRS_10-G_V18_P+NrynRS_10-G_V20_P+NrynRS_10-G_V21_P+NrynRS_10-G_V22_P+NrynRS_10-G_V23_P+NrynRS_10-G_V24_P+NrynRS_10-G_V25_P",
            "quantiles": [0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95],
            "hyper_params": {
                "subsample": 0.9650102355823993,
                "min_child_weight": 3,
                "max_depth": 6,
                "gamma": 0.1313691782115394,
                "colsample_bytree": 0.8206844265155975,
                "silent": 1,
                "objective": "reg:squarederror",
                "eta": 0.010025843216782565,
                "training_period_days": 90,
            },
            "feature_names": [
                "clearSky_dlf",
                "clearSky_ulf",
            ],
            "forecast_type": "demand",
        }

        # Assert
        pj = PredictionJobDataClass(**pj_dict)

        # Act
        self.assertIsInstance(pj, PredictionJobDataClass)
        self.assertEqual(pj["id"], 307)
        self.assertEqual(pj["turbine_type"], "test")
        self.assertEqual(pj["n_turbines"], 3.0)
        self.assertEqual(pj["hub_height"], 20.0)