def manipulator(self): manipulator = ConfigurationManipulator() for d in range(self.args.seq_len): # we add 1 to num_operators allow a ignored 'null' operator manipulator.add_parameter( SwitchParameter(d, self.num_operators + 1)) return manipulator
def main(): parser = argparse.ArgumentParser(parents=opentuner.argparsers()) args = parser.parse_args() manipulator = ConfigurationManipulator() manipulator.add_parameter(IntegerParameter('x', -200, 200)) interface = DefaultMeasurementInterface(args=args, manipulator=manipulator, project_name='examples', program_name='api_test', program_version='0.1') api = TuningRunManager(interface, args) for x in xrange(500): desired_result = api.get_next_desired_result() if desired_result is None: # The search space for this example is very small, so sometimes # the techniques have trouble finding a config that hasn't already # been tested. Change this to a continue to make it try again. break cfg = desired_result.configuration.data result = Result(time=test_func(cfg)) api.report_result(desired_result, result) best_cfg = api.get_best_configuration() api.finish() print 'best x found was', best_cfg['x']
def manipulator(self): mp = ConfigurationManipulator() for p in self._lsgbinary.params: mp.add_parameter(p) return mp
def manipulator(self): manipulator = ConfigurationManipulator() for d in xrange(self.args.dimensions): manipulator.add_parameter(FloatParameter(d, -self.args.domain, self.args.domain)) return manipulator
def main(): parser = argparse.ArgumentParser(parents=opentuner.argparsers()) args = parser.parse_args() manipulator = ConfigurationManipulator() manipulator.add_parameter(IntegerParameter('x', -200, 200)) interface = DefaultMeasurementInterface(args=args, manipulator=manipulator, project_name='examples', program_name='api_test', program_version='0.1') api = TuningRunManager(interface, args) for x in range(500): desired_result = api.get_next_desired_result() if desired_result is None: # The search space for this example is very small, so sometimes # the techniques have trouble finding a config that hasn't already # been tested. Change this to a continue to make it try again. break cfg = desired_result.configuration.data result = Result(time=test_func(cfg)) api.report_result(desired_result, result) best_cfg = api.get_best_configuration() api.finish() print('best x found was', best_cfg['x'])
def solve(self, job): logging.debug('Starting opentuner') failed_jobs_threshold = self.jobs_limit * _FAILED_JOBS_COEF manipulator = ConfigurationManipulator() for var in job.optimization_job.task_variables: if var.HasField('continuous_variable'): cont_var = var.continuous_variable param = FloatParameter(var.name, cont_var.l, cont_var.r) else: int_var = var.integer_variable param = IntegerParameter(var.name, int_var.l, int_var.r) manipulator.add_parameter(param) parser = argparse.ArgumentParser(parents=opentuner.argparsers()) args = parser.parse_args([]) args.parallelism = 4 args.no_dups = True interface = DefaultMeasurementInterface(args=args, manipulator=manipulator, project_name=job.job_id) api = TuningRunManager(interface, args) jobs = [] current_value = None failed_jobs = 0 while failed_jobs < failed_jobs_threshold and not self._check_for_termination( job): remaining_jobs = [] for job_id, desired_result in jobs: res = self._get_evaluation_job_result(job_id) if res is not None: if current_value is None or current_value > res + _THRESHOLD_EPS: failed_jobs = 0 else: failed_jobs += 1 result = Result(time=res) api.report_result(desired_result, result) else: remaining_jobs.append((job_id, desired_result)) jobs = remaining_jobs while len(jobs) < self.jobs_limit: desired_result = api.get_next_desired_result() if desired_result is None: break job_id = self._start_evaluation_job( job, desired_result.configuration.data) if job_id is None: api.report_result(desired_result, Result(time=math.inf)) else: jobs.append((job_id, desired_result)) if not jobs: break r = api.get_best_result() if r is not None: current_value = r.time logging.debug('Opentuner current state: %s %s', r.time, api.get_best_configuration()) time.sleep(5) res = api.get_best_result().time vars = api.get_best_configuration() api.finish() return res, vars
def manipulator(self): """ Defines the search space across configuration parameters """ manipulator = ConfigurationManipulator() for flag, param in self.ranged_param_dict.items(): log.info("Adding flag: " + str(flag) + ", " + str(type(param))) if isinstance(param, SparkIntType): tuner_param = IntegerParameter( flag, param.get_range_start(), param.get_range_end()) elif isinstance(param, SparkMemoryType): tuner_param = ScaledIntegerParameter( flag, param.get_range_start(), param.get_range_end(), param.get_scale()) elif isinstance(param, SparkBooleanType): tuner_param = BooleanParameter(flag) else: raise SparkTunerConfigError( ValueError, "Invalid type for ConfigurationManipulator") log.info("Added config: " + str(type(tuner_param)) + ": legal range " + str(tuner_param.legal_range(None)) + ", search space size " + str(tuner_param.search_space_size())) manipulator.add_parameter(tuner_param) return manipulator
def manipulator(self): manipulator = ConfigurationManipulator() manipulator.add_parameter( CartesianMappingParameter('Perm', list(range(self.processes)), self.stencil, self.n_nodes, self.ppn, 2, utils.getCartDims(self.processes), 1, 1, 1)) return manipulator
def manipulator(self): manipulator = ConfigurationManipulator() p = [-1 for _ in range(self.processes)] for i in range(self.G.getNumVertices()): p[i] = i manipulator.add_parameter( GraphMappingParameter('Perm', p, self.n_nodes, self.pps * self.n_sockets, self.n_sockets, self.graph_file, self.socket_factor, self.node_factor, self.global_factor)) return manipulator
def get_tuning_driver(self): from ctree.opentuner.driver import OpenTunerDriver from opentuner.search.manipulator import ConfigurationManipulator from opentuner.search.manipulator import FloatParameter from opentuner.search.objective import MinimizeTime manip = ConfigurationManipulator() manip.add_parameter(FloatParameter("x", -100.0, 100.0)) manip.add_parameter(FloatParameter("y", -100.0, 100.0)) return OpenTunerDriver(manipulator=manip, objective=MinimizeTime())
def create_test_tuning_run(db): parser = argparse.ArgumentParser(parents=opentuner.argparsers()) args = parser.parse_args() args.database = db manipulator = ConfigurationManipulator() manipulator.add_parameter(IntegerParameter('x', -200, 200)) interface = DefaultMeasurementInterface(args=args, manipulator=manipulator, project_name='examples', program_name='api_test', program_version='0.1') api = TuningRunManager(interface, args) return api
def get_tuning_driver(self): from ctree.opentuner.driver import OpenTunerDriver from opentuner.search.manipulator import ConfigurationManipulator from opentuner.search.manipulator import IntegerParameter from opentuner.search.manipulator import PowerOfTwoParameter from opentuner.search.objective import MinimizeTime, MinimizeEnergy manip = ConfigurationManipulator() manip.add_parameter(PowerOfTwoParameter("rx", 1, 8)) manip.add_parameter(PowerOfTwoParameter("ry", 1, 8)) manip.add_parameter(IntegerParameter("cx", 8, 32)) manip.add_parameter(IntegerParameter("cy", 8, 32)) return OpenTunerDriver(manipulator=manip, objective=MinimizeTime())
def build_search_space(self): """ Set up search space via ConfigurationManipulator, which is responsible for choosing configurations across runs, where a configuration is a particular assignment of the parameters. Tightly coupled with agent/system representations used in src. Repeating from above: *initial* search space - parameter per action (candidate index column in index, where candidate index column is one of the query columns) per query - see commit 8f94c4b *updated* search space - parameter per action (same, but here candidate index column is not one of query columns but any of columns in query table) per allowed index / indexing decision so, at risk of redundancy, an "action" refers to the particular assignment of a parameter, which is an integer indicating noop or a column for a candidate index column """ self.logger.info('Building OpenTuner search space...') self.idx_2_idx_cols = { } # store candidate index columns (OpenTuner operates on this) with candidate index (system operates on this) self.idx_2_tbl = {} manipulator = ConfigurationManipulator() for tbl in self.tbls: n_cols_per_tbl = len(tpch_table_columns[tbl]) for candidate_idx in range(self.n_idxs_per_tbl): idx_id = "tbl_{}_idx_{}".format(tbl, candidate_idx) idx_col_ids = [] for candidate_idx_col in range(self.n_cols_per_idx): idx_col_id = idx_id + "_idx_col_{}".format( candidate_idx_col) idx_col_ids.append(idx_col_id) manipulator.add_parameter( IntegerParameter(idx_col_id, 0, n_cols_per_tbl)) self.idx_2_idx_cols[idx_id] = idx_col_ids self.idx_2_tbl[idx_id] = tbl self.logger.info("... actions are: {}".format(self.idx_2_idx_cols)) return manipulator
def main(args, cfg, ss): logging.basicConfig(level=logging.INFO) manipulator = ConfigurationManipulator() params = cfg.getAllParameters() print "\nFeature variables...." for key in params.keys(): print "\t", key manipulator.add_parameter(cfg.getParameter(key)) mi = StreamJitMI(args, ss, manipulator, FixedInputManager(), MinimizeTime()) m = TuningRunMain(mi, args) m.main()
def test_1d_config(self): from ctree.opentuner.driver import OpenTunerDriver from opentuner.search.objective import MinimizeTime from opentuner.search.manipulator import ConfigurationManipulator, IntegerParameter cfg = ConfigurationManipulator() cfg.add_parameter(IntegerParameter("foo", 0, 199)) driver = OpenTunerDriver(manipulator=cfg, objective=MinimizeTime()) unsearched = set(range(200)) for cfg in islice(driver.configs, 20): val = cfg["foo"] driver.report(time=val) unsearched.remove(val) self.assertEqual(len(unsearched), 180)
def main(args, cfg, jvmOptions): logging.basicConfig(level=logging.INFO) manipulator = ConfigurationManipulator() params = dict(cfg.items() + jvmOptions.items()) #print "\nFeature variables...." for key in params.keys(): #print "\t", key manipulator.add_parameter(params.get(key)) mi = StreamJitMI(args, jvmOptions, manipulator, FixedInputManager(), MinimizeTime()) m = TuningRunMain(mi, args) m.main()
def main(args, cfg, jvmOptions): logging.basicConfig(level=logging.INFO) manipulator = ConfigurationManipulator() params = dict(cfg.items() + jvmOptions.items()) #print "\nFeature variables...." for key in params.keys(): #print "\t", key manipulator.add_parameter(params.get(key)) mi = StreamJitMI(args,jvmOptions, manipulator, FixedInputManager(), MinimizeTime()) m = TuningRunMain(mi, args) m.main()
def build_manipulator(api_config): """Build a ConfigurationManipulator object to be used by opentuner. Parameters ---------- api_config : dict-like of dict-like Configuration of the optimization variables. See API description. Returns ------- manipulator : ConfigurationManipulator Some over complexified class required by opentuner to run. """ manipulator = ConfigurationManipulator() for pname in api_config: ptype = api_config[pname]["type"] pspace = api_config[pname].get("space", None) pmin, pmax = api_config[pname].get("range", (None, None)) if ptype == "real": if pspace in ("linear", "logit"): ot_param = FloatParameter(pname, pmin, pmax) elif pspace in ("log", "bilog"): LogFloatParameter_ = ClippedParam(LogFloatParameter) ot_param = LogFloatParameter_(pname, pmin, pmax) else: assert False, "unsupported param space = %s" % pspace elif ptype == "int": if pspace in ("linear", "logit"): ot_param = IntegerParameter(pname, pmin, pmax) elif pspace in ("log", "bilog"): ot_param = LogIntegerParameter(pname, pmin, pmax) else: assert False, "unsupported param space = %s" % pspace elif ptype == "bool": # The actual bool parameter seems not to work in Py3 :( ot_param = IntegerParameter(pname, 0, 1) elif ptype in ("cat", "ordinal"): # Treat ordinal and categorical variables the same for now. assert "values" in api_config[pname] pvalues = api_config[pname]["values"] ot_param = EnumParameter(pname, pvalues) else: assert False, "type=%s/space=%s not handled in opentuner yet" % ( ptype, pspace) manipulator.add_parameter(ot_param) return manipulator
def __init__(self, args=None): manipulator = ConfigurationManipulator() conv_args = ast.literal_eval(args.conv2d) input_shape = ast.literal_eval(args.input) self.conv = torch.nn.Conv2d(*conv_args) self.image = torch.randn(*input_shape) # Dry run codegen to capture config cg = ConvolutionGenerator(ConfigRecorder(manipulator), self.conv, self.image) assert len(manipulator.params) # import pprint; pprint.pprint(manipulator.random()) sec = float( median( timeit.repeat(lambda: cg(self.image), number=1, repeat=REPEAT))) self.times = max(1, int(0.1 / sec)) super(ConvTuner, self).__init__( args=args, project_name="ConvTuner", program_name=repr(conv_args), program_version=repr(input_shape), manipulator=manipulator, )
def manipulator(self): m = ConfigurationManipulator() for i in range(0, 12000): m.add_parameter(BooleanParameter('L{}'.format(i))) m.add_parameter(BooleanParameter('R{}'.format(i))) m.add_parameter(BooleanParameter('D{}'.format(i))) m.add_parameter(BooleanParameter('B{}'.format(i))) m.add_parameter(BooleanParameter('A{}'.format(i))) return m
def manipulator(self): m = ConfigurationManipulator() for i in xrange(0, 1000): #bias 3:1 in favor of moving right m.add_parameter( EnumParameter('move{}'.format(i), [ "R", "L", "RB", "LB", "N", "LR", "LRB", "R2", "RB2", "R3", "RB3" ])) m.add_parameter( IntegerParameter('move_duration{}'.format(i), 1, 60)) #m.add_parameter(BooleanParameter("D"+str(i))) for i in xrange(0, 1000): m.add_parameter( IntegerParameter('jump_frame{}'.format(i), 0, 24000)) m.add_parameter( IntegerParameter('jump_duration{}'.format(i), 1, 32)) return m
def test_1d_config(self): from ctree.opentuner.driver import OpenTunerDriver from opentuner.search.objective import MinimizeTime from opentuner.search.manipulator import ( ConfigurationManipulator, IntegerParameter, ) cfg = ConfigurationManipulator() cfg.add_parameter( IntegerParameter("foo", 0, 199) ) driver = OpenTunerDriver(manipulator=cfg, objective=MinimizeTime()) unsearched = set(range(200)) for cfg in islice(driver.configs, 20): val = cfg["foo"] driver.report(time=val) unsearched.remove(val) self.assertEqual(len(unsearched), 180)
def manipulator(self): """create the configuration manipulator, from example config""" upper_limit = self.program_settings['n'] + 1 cfg = open(self.args.program_cfg_default).read() manipulator = ConfigurationManipulator() self.choice_sites = dict() for m in re.finditer( r" *([a-zA-Z0-9_-]+)[ =]+([0-9e.+-]+) *" r"[#] *([a-z]+).* ([0-9]+) to ([0-9]+)", cfg): k, v, valtype, minval, maxval = m.group(1, 2, 3, 4, 5) minval = float(minval) maxval = float(maxval) if upper_limit: maxval = min(maxval, upper_limit) assert valtype == 'int' # log.debug("param %s %f %f", k, minval, maxval) m1 = re.match(r'(.*)_lvl[0-9]+_rule', k) m2 = re.match(r'(.*)_lvl[0-9]+_cutoff', k) if m1: self.choice_sites[m1.group(1)] = int(maxval) elif m2: pass elif k == 'worker_threads': manipulator.add_parameter(IntegerParameter(k, 1, 16)) elif k == 'distributedcutoff': pass elif minval == 0 and maxval < 64: manipulator.add_parameter(SwitchParameter(k, maxval)) else: manipulator.add_parameter( LogIntegerParameter(k, minval, maxval)) for name, choices in list(self.choice_sites.items()): manipulator.add_parameter( SelectorParameter('.' + name, list(range(choices + 1)), old_div(upper_limit, choices))) self.manipulator = manipulator return manipulator
def manipulator(self): m = ConfigurationManipulator() for i in range(0, 12000): m.add_parameter(BooleanParameter("L{}".format(i))) m.add_parameter(BooleanParameter("R{}".format(i))) m.add_parameter(BooleanParameter("D{}".format(i))) m.add_parameter(BooleanParameter("B{}".format(i))) m.add_parameter(BooleanParameter("A{}".format(i))) return m
def manipulator(self): m = ConfigurationManipulator() for i in xrange(0, 12000): m.add_parameter(BooleanParameter('L{}'.format(i))) m.add_parameter(BooleanParameter('R{}'.format(i))) m.add_parameter(BooleanParameter('D{}'.format(i))) m.add_parameter(BooleanParameter('B{}'.format(i))) m.add_parameter(BooleanParameter('A{}'.format(i))) return m
def manipulator(self): '''create the configuration manipulator, from example config''' upper_limit = self.program_settings['n']+1 cfg = open(self.args.program_cfg_default).read() manipulator = ConfigurationManipulator() for m in re.finditer(r" *([a-zA-Z0-9_-]+)[ =]+([0-9e.+-]+) *" r"[#] *([a-z]+).* ([0-9]+) to ([0-9]+)", cfg): k, v, valtype, minval, maxval = m.group(1,2,3,4,5) minval = float(minval) maxval = float(maxval) if upper_limit: maxval = min(maxval, upper_limit) assert valtype=='int' #log.debug("param %s %f %f", k, minval, maxval) if minval == 0 and maxval < 64: manipulator.add_parameter(SwitchParameter(k, maxval)) else: manipulator.add_parameter(LogIntegerParameter(k, minval, maxval)) return manipulator
def manipulator(self): m = ConfigurationManipulator() for i in xrange(0, 1000): m.add_parameter(EnumParameter('move{}'.format(i), ["R", "L", "RB", "LB", "N", "LR", "LRB", "R2", "RB2", "R3", "RB3"])) m.add_parameter(IntegerParameter('move_duration{}'.format(i), 1, 60)) #m.add_parameter(BooleanParameter("D"+str(i))) for i in xrange(0, 1000): m.add_parameter(IntegerParameter('jump_frame{}'.format(i), 0, 24000)) m.add_parameter(IntegerParameter('jump_duration{}'.format(i), 1, 32)) return m
def manipulator(self): """create the configuration manipulator, from example config""" upper_limit = self.program_settings['n'] + 1 cfg = open(self.args.program_cfg_default).read() manipulator = ConfigurationManipulator() self.choice_sites = dict() for m in re.finditer(r" *([a-zA-Z0-9_-]+)[ =]+([0-9e.+-]+) *" r"[#] *([a-z]+).* ([0-9]+) to ([0-9]+)", cfg): k, v, valtype, minval, maxval = m.group(1, 2, 3, 4, 5) minval = float(minval) maxval = float(maxval) if upper_limit: maxval = min(maxval, upper_limit) assert valtype == 'int' #log.debug("param %s %f %f", k, minval, maxval) m1 = re.match(r'(.*)_lvl[0-9]+_rule', k) m2 = re.match(r'(.*)_lvl[0-9]+_cutoff', k) if m1: self.choice_sites[m1.group(1)] = int(maxval) elif m2: pass elif k == 'worker_threads': manipulator.add_parameter(IntegerParameter(k, 1, 16)) elif k == 'distributedcutoff': pass elif minval == 0 and maxval < 64: manipulator.add_parameter(SwitchParameter(k, maxval)) else: manipulator.add_parameter(LogIntegerParameter(k, minval, maxval)) for name, choices in self.choice_sites.items(): manipulator.add_parameter( SelectorParameter('.' + name, range(choices + 1), upper_limit / choices)) self.manipulator = manipulator return manipulator
def manipulator(self): "Returns an object that represents the parameters that can be tuned." self.param_map = {} self.disabled_inlines = [] manipulator = ConfigurationManipulator() handlers = { "unroll": self.handle_add_unroll, "pipeline": self.handle_add_pipeline, "inline": self.handle_add_inline, "dataflow": self.handle_add_dataflow, "array_partition": self.handle_add_array_partition } for pragma in self.pragmas: handlers[pragma['type']](manipulator, pragma) return manipulator
def get_tuning_driver(self): from ctree.opentuner.driver import OpenTunerDriver from opentuner.search.manipulator import ConfigurationManipulator from opentuner.search.manipulator import IntegerParameter from opentuner.search.manipulator import PowerOfTwoParameter from opentuner.search.objective import MinimizeTime, MinimizeEnergy manip = ConfigurationManipulator() manip.add_parameter(PowerOfTwoParameter("rx", 1, 8)) manip.add_parameter(PowerOfTwoParameter("ry", 1, 8)) manip.add_parameter(IntegerParameter("cx", 8, 32)) manip.add_parameter(IntegerParameter("cy", 8, 32)) return OpenTunerDriver(manipulator=manip, objective=MinimizeEnergy())
def manipulator(self): manipulator = ConfigurationManipulator() manipulator.add_parameter( PermutationParameter(0, list(range(len(self.distance))))) return manipulator
def manipulator(self): manipulator = ConfigurationManipulator() manipulator.add_parameter(IntegerParameter('pixeldiff_similarity_cutoff', 20, 50)) manipulator.add_parameter(IntegerParameter('min_max_colorful_cutoff', 5, 20)) manipulator.add_parameter(IntegerParameter('filter_grayscale_cutoff', 170, 215)) manipulator.add_parameter(IntegerParameter('black_and_white_grayscale_cutoff', 170, 215)) manipulator.add_parameter(IntegerParameter('count_around_delete_cutoff', 2, 4)) manipulator.add_parameter(IntegerParameter('count_around_add_cutoff', 2, 5)) manipulator.add_parameter(IntegerParameter('conway_many_count', 0, 5)) manipulator.add_parameter(BooleanParameter('overlay')) return manipulator
def tuning_loop(): report_delay = 200 last_time = time.time() start_time = last_time parser = argparse.ArgumentParser(parents = opentuner.argparsers()) parser.add_argument("--processes", type = int, help = "Number of Python threads available.") parser.add_argument("--no-wait", action = "store_true", help = "Do not wait for requested results to generate more requests.") args = parser.parse_args() pool = ThreadPool(args.processes) manipulator = ConfigurationManipulator() for name in legup_parameters.parameters: parameter_type = legup_parameters.parameter_type(name) values = legup_parameters.parameter_values(name) if parameter_type == int: manipulator.add_parameter(IntegerParameter(name, values[0], values[1])) elif parameter_type == bool: manipulator.add_parameter(BooleanParameter(name)) elif parameter_type == Enum: manipulator.add_parameter(EnumParameter(name, values)) else: print("ERROR: No such parameter type \"{0}\"".format(name)) interface = DefaultMeasurementInterface(args = args, manipulator = manipulator, project_name = 'HLS-FPGAs', program_name = 'legup-tuner', program_version = '0.0.1') manager = TuningRunManager(interface, args) current_time = time.time() computing_results = [] computed_results = [] desired_results = manager.get_desired_results() while current_time - start_time < args.stop_after: if args.no_wait: if len(desired_results) != 0 or len(computing_results) != 0: for desired_result in desired_results: computing_results.append([desired_result, pool.apply_async(get_wallclock_time, (desired_result.configuration.data, ))]) for result in computing_results: if result[1].ready() and result[0] not in computed_results: cost = result[1].get() manager.report_result(result[0], Result(time = cost)) computed_results.append(result) for result in computed_results: if result in computing_results: computing_results.remove(result) computed_results = [] else: if len(desired_results) != 0: cfgs = [dr.configuration.data for dr in desired_results] results = pool.map_async(get_wallclock_time, cfgs).get(timeout = None) for dr, result in zip(desired_results, results): manager.report_result(dr, Result(time = result)) desired_results = manager.get_desired_results() current_time = time.time() if (current_time - last_time) >= report_delay: log_intermediate(current_time - start_time, manager) last_time = current_time current_time = time.time() log_intermediate(current_time - start_time, manager) save_final_configuration(manager.get_best_configuration()) manager.finish()
def manipulator(self): ''' Define the search space by creating a ConfigurationManipulator ''' manipulator = ConfigurationManipulator() if self.args.window is None: manipulator.add_parameter(IntegerParameter('window', 1000, 5000)) if self.args.interval is None: manipulator.add_parameter(IntegerParameter('interval', 2000, 10000)) if self.args.sketch_size is None: manipulator.add_parameter(IntegerParameter('sketch-size', 1000, 5000)) if self.args.k_hops is None: manipulator.add_parameter(IntegerParameter('k-hops', 1, 5)) if self.args.chunk_size is None: manipulator.add_parameter(IntegerParameter('chunk-size', 5, 20)) if self.args.lambda_param is None: manipulator.add_parameter(FloatParameter('lambda-param', 0.0, 1.0)) # manipulator.add_parameter(EnumParameter('threshold-metric', ['mean', 'max'])) # manipulator.add_parameter(FloatParameter('num-stds', 3.5, 6.0)) return manipulator
def manipulator(self): m = ConfigurationManipulator() for i in range(0, 400 * 60): m.add_parameter(EnumParameter('{}'.format(i), list(range(0, 16)))) return m
def manipulator(self): #FIXME: should some of these be expressed as booleans or switch parameters? #FIXME: how to express P and Q, given PxQ=nprocs, with nprocs being fixed? #FIXME: how to express logscaled parameter with a particular base? manipulator = ConfigurationManipulator() manipulator.add_parameter(IntegerParameter("blocksize", 1, 64)) manipulator.add_parameter(IntegerParameter("row_or_colmajor_pmapping", 0, 1)) manipulator.add_parameter(IntegerParameter("pfact", 0, 2)) manipulator.add_parameter(IntegerParameter("nbmin", 1, 4)) manipulator.add_parameter(IntegerParameter("ndiv", 2, 2)) manipulator.add_parameter(IntegerParameter("rfact", 0, 4)) manipulator.add_parameter(IntegerParameter("bcast", 0, 5)) manipulator.add_parameter(IntegerParameter("depth", 0, 4)) manipulator.add_parameter(IntegerParameter("swap", 0, 2)) manipulator.add_parameter(IntegerParameter("swapping_threshold", 64, 128)) manipulator.add_parameter(IntegerParameter("L1_transposed", 0, 1)) manipulator.add_parameter(IntegerParameter("U_transposed", 0, 1)) manipulator.add_parameter(IntegerParameter("mem_alignment", 4, 16)) return manipulator
def manipulator(self): # FIXME: should some of these be expressed as booleans or switch parameters? # FIXME: how to express P and Q, given PxQ=nprocs, with nprocs being fixed? # FIXME: how to express logscaled parameter with a particular base? manipulator = ConfigurationManipulator() manipulator.add_parameter(IntegerParameter("blocksize", 1, 64)) manipulator.add_parameter(IntegerParameter("row_or_colmajor_pmapping", 0, 1)) manipulator.add_parameter(IntegerParameter("pfact", 0, 2)) manipulator.add_parameter(IntegerParameter("nbmin", 1, 4)) manipulator.add_parameter(IntegerParameter("ndiv", 2, 2)) manipulator.add_parameter(IntegerParameter("rfact", 0, 4)) manipulator.add_parameter(IntegerParameter("bcast", 0, 5)) manipulator.add_parameter(IntegerParameter("depth", 0, 4)) manipulator.add_parameter(IntegerParameter("swap", 0, 2)) manipulator.add_parameter(IntegerParameter("swapping_threshold", 64, 128)) manipulator.add_parameter(IntegerParameter("L1_transposed", 0, 1)) manipulator.add_parameter(IntegerParameter("U_transposed", 0, 1)) manipulator.add_parameter(IntegerParameter("mem_alignment", 4, 16)) return manipulator
import argparse def get_next_desired_result(): global desired_result desired_result = api.get_next_desired_result() while desired_result is None: desired_result = api.get_next_desired_result() return desired_result.configuration.data def report_result(runtime): api.report_result(desired_result, Result(time=runtime)) def finish(): api.finish() parser = argparse.ArgumentParser(parents=opentuner.argparsers()) args = parser.parse_args() manipulator = ConfigurationManipulator() :::parameters::: interface = DefaultMeasurementInterface(args=args, manipulator=manipulator, project_name='atf_library', program_name='atf_library', program_version='0.1') api = TuningRunManager(interface, args) )"
def tuning_loop(): report_delay = 30 last_time = time.time() start_time = last_time iterations = 5 parser = argparse.ArgumentParser(parents = opentuner.argparsers()) parser.add_argument("--processes", type = int, help = "Number of Python threads available.") parser.add_argument("--no-wait", action = "store_true", help = "Do not wait for requested results to generate more requests.") parser.add_argument("--application", type = str, help = "Application name.") parser.add_argument("--verilog-file", type = str, help = "Verilog file for the application.") args = parser.parse_args() pool = ThreadPool(args.processes) manipulator = ConfigurationManipulator() global application global verilog_file global application_path global container_path global host_path global image_name global script_name global tuning_init application = args.application verilog_file = args.verilog_file application_path = "/root/legup_src/legup-4.0/examples/chstone/{0}".format(application) container_path = "/root/legup_src/legup-4.0/examples/chstone/{0}/tuner".format(application) host_path = "/home/bruelp/legup-tuner/post_place_and_route/py" image_name = "legup_quartus" script_name = "measure.sh" print(application, container_path, application_path) for name in legup_parameters.parameters: parameter_type = legup_parameters.parameter_type(name) values = legup_parameters.parameter_values(name) if parameter_type == int: manipulator.add_parameter(IntegerParameter(name, values[0], values[1])) elif parameter_type == bool: manipulator.add_parameter(BooleanParameter(name)) elif parameter_type == Enum: manipulator.add_parameter(EnumParameter(name, values)) else: print("ERROR: No such parameter type \"{0}\"".format(name)) interface = DefaultMeasurementInterface(args = args, manipulator = manipulator, project_name = 'HLS-FPGAs', program_name = 'legup-tuner', program_version = '0.0.1') manager = TuningRunManager(interface, args) current_time = time.time() computing_results = [] computed_results = [] desired_results = manager.get_desired_results() while current_time - start_time < args.stop_after: if args.no_wait: if len(desired_results) != 0 or len(computing_results) != 0: for desired_result in desired_results: computing_results.append([desired_result, pool.apply_async(get_wallclock_time, (desired_result.configuration.data, ))]) for result in computing_results: if result[1].ready() and result[0] not in computed_results: cost = result[1].get() manager.report_result(result[0], Result(time = cost)) computed_results.append(result) for result in computed_results: if result in computing_results: computing_results.remove(result) computed_results = [] else: if len(desired_results) != 0: cfgs = [dr.configuration.data for dr in desired_results] results = pool.map_async(get_wallclock_time, cfgs).get(timeout = None) for dr, result in zip(desired_results, results): manager.report_result(dr, Result(time = result['value'], cycles = result['cycles'], fmax = result['fmax'], LU = result['lu'], pins = result['pins'], regs = result['regs'], block = result['block'], ram = result['ram'], dsp = result['dsp'])) desired_results = manager.get_desired_results() current_time = time.time() if (current_time - last_time) >= report_delay: log_intermediate(current_time - start_time, manager) last_time = current_time current_time = time.time() log_intermediate(current_time - start_time, manager) save_final_configuration(manager.get_best_configuration()) manager.finish()
def manipulator(self): manipulator = ConfigurationManipulator() manipulator.add_parameter(PermutationParameter(0, range(SIZE))) return manipulator
def manipulator(self): manipulator = ConfigurationManipulator() manipulator.add_parameter(PermutationParameter(0, range(len(self.distance)))) return manipulator
def manipulator(self): manipulator = ConfigurationManipulator() for d in range(self.args.seq_len): # we add 1 to num_operators allow a ignored 'null' operator manipulator.add_parameter(SwitchParameter(d, self.num_operators + 1)) return manipulator
def tuning_loop(): report_delay = 5 last_time = time.time() start_time = last_time parser = argparse.ArgumentParser(parents=opentuner.argparsers()) parser.add_argument("--processes", type=int, help="Number of Python threads available.") parser.add_argument( "--no-wait", action="store_true", help="Do not wait for requested results to generate more requests.") args = parser.parse_args() pool = ThreadPool(args.processes) manipulator = ConfigurationManipulator() for name in legup_parameters.parameters: parameter_type = legup_parameters.parameter_type(name) values = legup_parameters.parameter_values(name) if parameter_type == int: manipulator.add_parameter( IntegerParameter(name, values[0], values[1])) elif parameter_type == bool: manipulator.add_parameter(BooleanParameter(name)) elif parameter_type == Enum: manipulator.add_parameter(EnumParameter(name, values)) else: print("ERROR: No such parameter type \"{0}\"".format(name)) interface = DefaultMeasurementInterface(args=args, manipulator=manipulator, project_name='HLS-FPGAs', program_name='legup-tuner', program_version='0.0.1') manager = TuningRunManager(interface, args) current_time = time.time() computing_results = [] computed_results = [] desired_results = manager.get_desired_results() while current_time - start_time < args.stop_after: if args.no_wait: if len(desired_results) != 0 or len(computing_results) != 0: for desired_result in desired_results: computing_results.append([ desired_result, pool.apply_async(get_wallclock_time, (desired_result.configuration.data, )) ]) for result in computing_results: if result[1].ready() and result[0] not in computed_results: cost = result[1].get() manager.report_result(result[0], Result(time=cost)) computed_results.append(result) for result in computed_results: if result in computing_results: computing_results.remove(result) computed_results = [] else: if len(desired_results) != 0: cfgs = [dr.configuration.data for dr in desired_results] results = pool.map_async(get_wallclock_time, cfgs).get(timeout=None) for dr, result in zip(desired_results, results): manager.report_result(dr, Result(time=result)) desired_results = manager.get_desired_results() current_time = time.time() if (current_time - last_time) >= report_delay: log_intermediate(current_time - start_time, manager) last_time = current_time current_time = time.time() log_intermediate(current_time - start_time, manager) save_final_configuration(manager.get_best_configuration()) manager.finish()
def manipulator(self): m = ConfigurationManipulator() for i in xrange(0, 400*60): m.add_parameter(EnumParameter('{}'.format(i), xrange(0, 16))) return m
def tuning_loop(): report_delay = 30 last_time = time.time() start_time = last_time iterations = 5 parser = argparse.ArgumentParser(parents=opentuner.argparsers()) parser.add_argument("--processes", type=int, help="Number of Python threads available.") parser.add_argument( "--no-wait", action="store_true", help="Do not wait for requested results to generate more requests.") parser.add_argument("--application", type=str, help="Application name.") parser.add_argument("--verilog-file", type=str, help="Verilog file for the application.") args = parser.parse_args() pool = ThreadPool(args.processes) manipulator = ConfigurationManipulator() global application global verilog_file global application_path global container_path global host_path global image_name global script_name global tuning_init application = args.application verilog_file = args.verilog_file application_path = "/root/legup_src/legup-4.0/examples/chstone/{0}".format( application) container_path = "/root/legup_src/legup-4.0/examples/chstone/{0}/tuner".format( application) host_path = "/home/bruelp/legup-tuner/post_place_and_route/py" image_name = "legup_quartus" script_name = "measure.sh" print(application, container_path, application_path) for name in legup_parameters.parameters: parameter_type = legup_parameters.parameter_type(name) values = legup_parameters.parameter_values(name) if parameter_type == int: manipulator.add_parameter( IntegerParameter(name, values[0], values[1])) elif parameter_type == bool: manipulator.add_parameter(BooleanParameter(name)) elif parameter_type == Enum: manipulator.add_parameter(EnumParameter(name, values)) else: print("ERROR: No such parameter type \"{0}\"".format(name)) interface = DefaultMeasurementInterface(args=args, manipulator=manipulator, project_name='HLS-FPGAs', program_name='legup-tuner', program_version='0.0.1') manager = TuningRunManager(interface, args) current_time = time.time() computing_results = [] computed_results = [] desired_results = manager.get_desired_results() while current_time - start_time < args.stop_after: if args.no_wait: if len(desired_results) != 0 or len(computing_results) != 0: for desired_result in desired_results: computing_results.append([ desired_result, pool.apply_async(get_wallclock_time, (desired_result.configuration.data, )) ]) for result in computing_results: if result[1].ready() and result[0] not in computed_results: cost = result[1].get() manager.report_result(result[0], Result(time=cost)) computed_results.append(result) for result in computed_results: if result in computing_results: computing_results.remove(result) computed_results = [] else: if len(desired_results) != 0: cfgs = [dr.configuration.data for dr in desired_results] results = pool.map_async(get_wallclock_time, cfgs).get(timeout=None) for dr, result in zip(desired_results, results): manager.report_result( dr, Result(time=result['value'], cycles=result['cycles'], fmax=result['fmax'], LU=result['lu'], pins=result['pins'], regs=result['regs'], block=result['block'], ram=result['ram'], dsp=result['dsp'])) desired_results = manager.get_desired_results() current_time = time.time() if (current_time - last_time) >= report_delay: log_intermediate(current_time - start_time, manager) last_time = current_time current_time = time.time() log_intermediate(current_time - start_time, manager) save_final_configuration(manager.get_best_configuration()) manager.finish()