def _PODbootstrapModelCl(self):
        class buildPODModel():
            def __init__(self, inputSample, outputSample, detection,
                         noiseThres, saturationThres, resDistFact, boxCox,
                         censored):

                results = _computeLinearModel(inputSample, outputSample,
                                              detection, noiseThres,
                                              saturationThres, boxCox,
                                              censored)

                self.intercept = results['intercept']
                self.slope = results['slope']
                self.residuals = results['residuals']
                self.detectionBoxCox = results['detection']
                self.resDist = resDistFact.build(self.residuals)

            def PODmodel(self, x):
                defectThres = self.detectionBoxCox - (self.intercept +
                                                      self.slope * x)
                return self.resDist.computeComplementaryCDF(defectThres)

        data = ot.Sample(self._size, 2)
        data[:, 0] = self._inputSample
        data[:, 1] = self._outputSample
        # bootstrap of the data
        bootstrapExp = ot.BootstrapExperiment(data)
        PODcoll = []
        for i in range(self._simulationSize):
            # generate a sample with replacement within data of the same size
            bootstrapData = bootstrapExp.generate()
            # compute the linear models
            model = buildPODModel(bootstrapData[:, 0], bootstrapData[:, 1],
                                  self._detection, self._noiseThres,
                                  self._saturationThres, self._resDistFact,
                                  self._boxCox, self._censored)

            PODcoll.append(model.PODmodel)
            if self._verbose:
                updateProgress(i, self._simulationSize,
                               'Computing POD (bootstrap)')

        return PODcoll
示例#2
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
ot.RandomGenerator.SetSeed(0)

# Generate sample with the given plane
size = 20
dim = 2
refSample = ot.Sample(size, dim)
for i in range(size):
    p = ot.Point(dim)
    for j in range(dim):
        p[j] = i + j
    refSample[i] = p

myPlane = ot.BootstrapExperiment(refSample)

sample = myPlane.generate()

# Create an empty graph
graph = ot.Graph("Bootstrap experiment", "x1", "x2", True, "")

# Create the cloud
cloud = ot.Cloud(sample, "blue", "fsquare", "")

# Then, draw it
graph.add(cloud)
fig = plt.figure(figsize=(4, 4))
axis = fig.add_subplot(111)
axis.set_xlim(auto=True)
View(graph, figure=fig, axes=[axis], add_legend=False)
示例#3
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
ot.RandomGenerator.SetSeed(0)

# Generate sample with the given plane
size = 20
dim = 2
refSample = ot.Sample(size, dim)
for i in range(size):
    p = ot.Point(dim)
    for j in range(dim):
        p[j] = i + j
    refSample[i] = p

experiment = ot.BootstrapExperiment(refSample)

sample = experiment.generate()

# Create an empty graph
graph = ot.Graph("Bootstrap experiment", "x1", "x2", True, "")

# Create the cloud
cloud = ot.Cloud(sample, "blue", "fsquare", "")

# Then, draw it
graph.add(cloud)
fig = plt.figure(figsize=(4, 4))
axis = fig.add_subplot(111)
axis.set_xlim(auto=True)
View(graph, figure=fig, axes=[axis], add_legend=False)
示例#4
0
    def run(self):
        """
        Build the POD models.

        Notes
        -----
        This method build the quantile regression model. First the censored data
        are filtered if needed. The Box Cox transformation is performed if it is
        enabled. Then it builds the POD model for given data and computes using
        bootstrap all the defects quantile needed to build the POD model at the
        confidence level.
        """

        # Run the preliminary run of the POD class
        result = self._run(self._inputSample, self._outputSample, self._detection,
                           self._noiseThres, self._saturationThres, self._boxCox,
                           self._censored)

        # get some results
        self._defects = result['inputSample']
        self._signals = result['signals']
        self._detectionBoxCox = result['detectionBoxCox']

        defectsSize = self._defects.getSize()

        # create the quantile regression object
        X = ot.NumericalSample(defectsSize, [1, 0])
        X[:, 1] = self._defects
        self._algoQuantReg = QuantReg(np.array(self._signals), np.array(X))

        # Compute the defect quantile
        defectMax = self._defects.getMax()[0]
        defectList = []
        for probLevel in self._quantile:
            # fit the quantile regression and return the NMF
            model = self._buildModel(1. - probLevel)
            # Solve the model == detectionBoxCox with defects 
            # boundaries = [0, defectMax]
            defectList.append(ot.Brent().solve(model, self._detectionBoxCox,
                                               0, defectMax))
        # create support of the interpolating function including
        # point (0, 0) and point (defectMax, max(quantile))
        xvalue = np.hstack([0, defectList, defectMax])
        yvalue = np.hstack([0., self._quantile, self._quantile.max()])
        interpModel = interp1d(xvalue, yvalue, kind='linear')
        self._PODmodel = ot.PythonFunction(1, 1, interpModel)


        ############ Confidence interval with bootstrap ########################
        # Compute a NsimulationSize defect sizes for all quantiles
        data = ot.NumericalSample(self._size, 2)
        data[:, 0] = self._inputSample
        data[:, 1] = self._outputSample
        # bootstrap of the data
        bootstrapExp = ot.BootstrapExperiment(data)
        # create a numerical sample which contains for all simulations the 
        # defect quantile value. The goal is to compute the QuantilePerComponent
        # of the simulation for each defect quantile (columns)
        self._defectsPerQuantile = ot.NumericalSample(self._simulationSize, self._quantile.size)
        for i in range(self._simulationSize):
            # generate a sample with replacement within data of the same size
            bootstrapData = bootstrapExp.generate()
            # run the preliminary analysis : censore checking and box cox
            result = self._run(bootstrapData[:,0], bootstrapData[:,1], self._detection,
                               self._noiseThres, self._saturationThres,
                               self._boxCox, self._censored)

            # get some results
            defects = result['inputSample']
            signals = result['signals']
            detectionBoxCox = result['detectionBoxCox']
            defectsSize = defects.getSize()

            # new quantile regression algorithm
            X = ot.NumericalSample(defectsSize, [1, 0])
            X[:, 1] = defects
            algoQuantReg = QuantReg(np.array(signals), np.array(X))

            # compute the quantile defects
            defectMax = defects.getMax()[0]
            defectList = []
            for probLevel in self._quantile:
                fit = algoQuantReg.fit(1. - probLevel, max_iter=300, p_tol=1e-2)
                def model(x):
                    X = ot.NumericalPoint([1, x[0]])
                    return ot.NumericalPoint(fit.predict(X))
                model = ot.PythonFunction(1, 1, model)
                # Solve the model == detectionBoxCox with defects 
                # boundaries = [-infinity, defectMax] : it allows negative defects
                # when for small prob level, there is no intersection with
                # the detection threshold for positive defects
                defectList.append(ot.Brent().solve(model, detectionBoxCox,
                                                   -ot.SpecFunc.MaxNumericalScalar,
                                                   defectMax))
            # add the quantile in the numerical sample as the ith simulation
            self._defectsPerQuantile[i, :] = defectList
            if self._verbose:
                updateProgress(i, self._simulationSize, 'Computing defect quantile')