def drawLevelSetContour2D(distribution,
                          numberOfPointsInXAxis,
                          alpha,
                          threshold,
                          sampleSize=500):
    '''
    Compute the minimum volume LevelSet of measure equal to alpha and get the 
    corresponding density value (named threshold).
    Generate a sample of the distribution and draw it. 
    Draw a contour plot for the distribution, where the PDF is equal to threshold. 
    '''
    sample = distribution.getSample(sampleSize)
    X1min = sample[:, 0].getMin()[0]
    X1max = sample[:, 0].getMax()[0]
    X2min = sample[:, 1].getMin()[0]
    X2max = sample[:, 1].getMax()[0]
    xx = ot.Box([numberOfPointsInXAxis], ot.Interval([X1min],
                                                     [X1max])).generate()
    yy = ot.Box([numberOfPointsInXAxis], ot.Interval([X2min],
                                                     [X2max])).generate()
    xy = ot.Box([numberOfPointsInXAxis, numberOfPointsInXAxis],
                ot.Interval([X1min, X2min], [X1max, X2max])).generate()
    data = distribution.computePDF(xy)
    graph = ot.Graph('', 'X1', 'X2', True, 'topright')
    labels = ["%.2f%%" % (100 * alpha)]
    contour = ot.Contour(xx, yy, data, [threshold], labels)
    contour.setColor('black')
    graph.setTitle("%.2f%% of the distribution, sample size = %d" %
                   (100 * alpha, sampleSize))
    graph.add(contour)
    cloud = ot.Cloud(sample)
    graph.add(cloud)
    return graph
def test_two_inputs_one_output():
    # Kriging use case
    inputDimension = 2

    # Learning data
    levels = [8, 5]
    box = ot.Box(levels)
    inputSample = box.generate()
    # Scale each direction
    inputSample *= 10.0

    model = ot.SymbolicFunction(['x', 'y'], ['cos(0.5*x) + sin(y)'])
    outputSample = model(inputSample)

    # Validation
    sampleSize = 10
    inputValidSample = ot.ComposedDistribution(
        2 * [ot.Uniform(0, 10.0)]).getSample(sampleSize)
    outputValidSample = model(inputValidSample)

    # 2) Definition of exponential model
    # The parameters have been calibrated using TNC optimization
    # and AbsoluteExponential models
    scales = [5.33532, 2.61534]
    amplitude = [1.61536]
    covarianceModel = ot.SquaredExponential(scales, amplitude)

    # 3) Basis definition
    basis = ot.ConstantBasisFactory(inputDimension).build()

    # 4) Kriging algorithm
    algo = ot.KrigingAlgorithm(inputSample, outputSample, covarianceModel,
                               basis)
    algo.run()

    result = algo.getResult()
    # Get meta model
    metaModel = result.getMetaModel()
    outData = metaModel(inputValidSample)

    # 5) Errors
    # Interpolation
    ott.assert_almost_equal(outputSample, metaModel(inputSample), 3.0e-5,
                            3.0e-5)

    # 6) Kriging variance is 0 on learning points
    covariance = result.getConditionalCovariance(inputSample)
    ott.assert_almost_equal(covariance, ot.SquareMatrix(len(inputSample)),
                            7e-7, 7e-7)

    # Covariance per marginal & extract variance component
    coll = result.getConditionalMarginalCovariance(inputSample)
    var = [mat[0, 0] for mat in coll]
    ott.assert_almost_equal(var, [0] * len(var), 0.0, 1e-13)

    # Variance per marginal
    var = result.getConditionalMarginalVariance(inputSample)
    ott.assert_almost_equal(var, ot.Point(len(inputSample)), 0.0, 1e-13)
    # Estimation
    ott.assert_almost_equal(outputValidSample, outData, 1.e-1, 1e-1)
示例#3
0
    def drawLimitState(self, bounds, nX=50, nY=50):
        """
        Draw the limit state of an event.

        Parameters
        ----------
        event : an ot.Event
            The event we want to draw.

        bounds: an ot.Interval
            The lower and upper bounds of the interval.

        nX : an int
            The number of points in the X axis.

        nY : an int
            The number of points in the Y axis.

        Returns
        -------
        None.

        """
        if bounds.getDimension() != 2:
            raise ValueError("The input dimension of the bounds "
                             "is equal to %d but should be 2." %
                             (bounds.getDimension()))
        #
        threshold = self.event.getThreshold()
        g = self.event.getFunction()
        #
        boxExperiment = ot.Box([nX, nY], bounds)
        inputSample = boxExperiment.generate()
        outputSample = g(inputSample)
        #
        description = g.getInputDescription()
        graph = ot.Graph("Limit state surface", description[0], description[1],
                         True, "")
        # Create the contour
        levels = ot.Point([threshold])
        labels = [str(threshold)]
        drawLabels = True
        lowerBound = bounds.getLowerBound()
        upperBound = bounds.getUpperBound()
        x = LinearSample(lowerBound[0], upperBound[0], nX + 2)
        y = LinearSample(lowerBound[1], upperBound[1], nY + 2)
        contour = ot.Contour(x, y, outputSample, levels, labels, drawLabels)
        graph.add(contour)
        return graph
示例#4
0
    def drawLimitStateCrossCut(self, bounds, i=0, j=1, nX=50, nY=50):
        """
        Draw the cross-cut of the limit state of an event on a cross-cut.

        Parameters
        ----------
        bounds: an ot.Interval
            The lower and upper bounds of the cross-cut interval.
        i : int
            The index of the first marginal of the cross-cut.
        j : int
            The index of the second marginal of the cross-cut.
        nX : an int
            The number of points in the X axis.
        nY : an int
            The number of points in the Y axis.

        Returns
        -------
        graph : ot.Graph
            The plot of the (i, j) cross cut.
        """
        if bounds.getDimension() != 2:
            raise ValueError("The input dimension of the bounds "
                             "is equal to %d but should be 2." %
                             (bounds.getDimension()))
        #
        threshold = self.event.getThreshold()
        description = self.g.getInputDescription()
        boxExperiment = ot.Box([nX, nY], bounds)
        reducedInputSample = boxExperiment.generate()
        crosscutFunction = self.buildCrossCutFunction(i, j)
        outputSample = crosscutFunction(reducedInputSample)
        #
        graph = ot.Graph("Limit state surface", description[i], description[j],
                         True, "")
        # Create the contour
        levels = ot.Point([threshold])
        labels = [str(threshold)]
        drawLabels = True
        lowerBound = bounds.getLowerBound()
        upperBound = bounds.getUpperBound()
        x = LinearSample(lowerBound[0], upperBound[0], nX + 2)
        y = LinearSample(lowerBound[1], upperBound[1], nY + 2)
        contour = ot.Contour(x, y, outputSample, levels, labels, drawLabels)
        graph.add(contour)
        return graph
import openturns as ot
from openturns.viewer import View

# Box
d = ot.Box([3, 4, 5])
s = d.generate()
s.setDescription(["X1", "X2", "X3"])
g = ot.Graph()
g.setTitle("Box experiment")
g.setGridColor("black")
p = ot.Pairs(s)
g.add(p)
View(g)
示例#6
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View

# Generate sample with the given plane
levels = [4, 4]
myPlane = ot.Box(levels)
sample = myPlane.generate()

# Create an empty graph
graph = ot.Graph("Box plane", "x1", "x2", True, "")

# Create the cloud
cloud = ot.Cloud(sample, "blue", "fsquare", "")

# Then, draw it
graph.add(cloud)

fig = plt.figure(figsize=(4, 4))
axis = fig.add_subplot(111)
axis.set_xlim(auto=True)
View(graph, figure=fig, axes=[axis], add_legend=False)
示例#7
0
#! /usr/bin/env python

import openturns as ot

levels = [4] * 2
experiment = ot.Box(levels)
print('experiment = ', experiment)
sample = experiment.generate()
print('sample = ', repr(sample))

experiment = ot.Box(levels, ot.Interval([7.0, 8.0], [9.0, 16.0]))
print('experiment = ', experiment)
sample = experiment.generate()
print('sample = ', repr(sample))
示例#8
0
s = 10.0
event = ot.ThresholdEvent(vectorY, ot.Greater(), s)

# %%
# This event can easily be represented with a 1D curve as it is a branch of an hyperbole.
# If :math:`y =  x_1 x_2 = 10.0`, then the boundary of the domain of failure is the curve :
#
# .. math::
#
#    h : x_1 \mapsto \frac{10.0}{x_1}
#

# %%
# We shall represent this curve using a :class:`~openturns.Contour` object.
nx, ny = 15, 15
xx = ot.Box([nx], ot.Interval([0.0], [10.0])).generate()
yy = ot.Box([ny], ot.Interval([-10.0], [10.0])).generate()
inputData = ot.Box([nx, ny], ot.Interval([0.0, -10.0],
                                         [10.0, 10.0])).generate()
outputData = f(inputData)
mycontour = ot.Contour(xx, yy, outputData, [10.0], ["10.0"])
myGraph = ot.Graph("Representation of the failure domain", r"$X_1$", r"$X_2$",
                   True, "")
myGraph.add(mycontour)

# %%
texts = [r" Event : $\mathcal{D} = \{Y \geq 10.0\}$"]
myText = ot.Text([[4.0, 4.0]], texts)
myText.setTextSize(1)
myGraph.add(myText)
view = otv.View(myGraph)
    def draw(self, drawInliers=False, drawOutliers=True):
        """
        Draw the high density regions.

        Parameters
        ----------
        drawInliers : bool
            If True, draw inliers points.
        drawOutliers : bool
            If True, draw outliers points.
        """
        plabels = self.sample.getDescription()

        # Bivariate space
        grid = ot.GridLayout(self.dim, self.dim)
        # Axis are created and stored top to bottom, left to right
        for i in range(self.dim):
            for j in range(self.dim):
                if i >= j:  # lower triangle
                    graph = ot.Graph("", "", "", True, "topright")

                if i == j:  # diag
                    marginal_distribution = self.distribution.getMarginal(i)
                    curve = marginal_distribution.drawPDF()
                    graph.add(curve)
                    if drawInliers:
                        marginal_sample = self.sample[self.inlier_indices, i]
                        data = ot.Sample(marginal_sample.getSize(), 2)
                        data[:, 0] = marginal_sample
                        cloud = ot.Cloud(data)
                        cloud.setColor(self.inlier_color)
                        graph.add(cloud)
                    if drawOutliers:
                        marginal_sample = self.sample[self.outlier_indices, i]
                        data = ot.Sample(marginal_sample.getSize(), 2)
                        data[:, 0] = marginal_sample
                        cloud = ot.Cloud(data)
                        cloud.setColor(self.outlier_color)
                        graph.add(cloud)

                elif i > j:  # lower corners
                    # Use a regular grid to compute probability response surface
                    X1min = self.sample[:, j].getMin()[0]
                    X1max = self.sample[:, j].getMax()[0]
                    X2min = self.sample[:, i].getMin()[0]
                    X2max = self.sample[:, i].getMax()[0]

                    xx = ot.Box([self.numberOfPointsInXAxis],
                                ot.Interval([X1min], [X1max])).generate()

                    yy = ot.Box([self.numberOfPointsInXAxis],
                                ot.Interval([X2min], [X2max])).generate()

                    xy = ot.Box(
                        [
                            self.numberOfPointsInXAxis,
                            self.numberOfPointsInXAxis
                        ],
                        ot.Interval([X1min, X2min], [X1max, X2max]),
                    ).generate()

                    data = self.distribution.getMarginal([j, i]).computePDF(xy)

                    # Label using percentage instead of probability
                    n_contours = len(self.alphaLevels)
                    labels = [
                        "%.0f %%" % (self.alphaLevels[i] * 100)
                        for i in range(n_contours)
                    ]

                    contour = ot.Contour(xx, yy, data, self.pvalues,
                                         ot.Description(labels))
                    contour.setColor(self.contour_color)

                    graph.add(contour)

                    sample_ij = self.sample[:, [j, i]]

                    if drawInliers:
                        cloud = self._drawInliers(sample_ij)

                        if cloud is not None:
                            graph.add(cloud)

                    if drawOutliers:
                        cloud = self._drawOutliers(sample_ij)
                        if cloud is not None:
                            graph.add(cloud)

                if j == 0 and i > 0:
                    graph.setYTitle(plabels[i])
                if i == self.dim - 1:
                    graph.setXTitle(plabels[j])

                if i >= j:  # lower triangle
                    graph.setLegends([""])
                    grid.setGraph(i, j, graph)

        return grid
示例#10
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View

# Create a function
f = ot.Function(["x", "y"], ["z"], ["exp(-sin(cos(y)^2*x^2+sin(x)^2*y^2))"])

# Generate the data for the curves to be drawn
nX = 75
nY = 75
inputData = ot.Box([nX, nY]).generate()
inputData *= [10.0] * 2
inputData += [-5.0] * 2
data = f(inputData)
levels = [(0.5 + i) / 5 for i in range(5)]
# Create an empty graph
graph = ot.Graph("Complex iso lines", "u1", "u2", True, "")

# Create the contour
contour = ot.Contour(nX + 2, nY + 2, data)
contour.setLevels(levels)

# Then, draw it
graph.add(contour)

fig = plt.figure(figsize=(4, 4))
plt.suptitle("Complex iso lines example")
axis = fig.add_subplot(111)
axis.set_xlim(auto=True)
View(graph, figure=fig, axes=[axis], add_legend=False)
示例#11
0
twoSample = ot.Sample(size, 1)
for i in range(size):
    oneSample[i, 0] = 7.0 * sin(-3.5 + (6.5 * i) / (size - 1.0)) + 2.0
    twoSample[i,
              0] = -2.0 * oneSample[i, 0] + 3.0 + 0.05 * sin(oneSample[i, 0])

test = ot.LinearModelAlgorithm(oneSample, twoSample)
result = ot.LinearModelResult(test.getResult())
print("trend coefficients = ", result.getCoefficients())

print("Fit y ~ 1 + 0.1 x + 10 x^2 model using 100 points")
ot.RandomGenerator.SetSeed(0)
size = 100
# Define a linespace from 0 to 10 with size points
# We use a Box expermient ==> remove 0 & 1 points
experiment = ot.Box([size - 2])
X = experiment.generate()
# X is defined in [0,1]
X *= [10]
# Stack X2
X2 = ot.Sample(X)
for i in range(size):
    X2[i, 0] = X[i, 0] * X2[i, 0]
X.stack(X2)
# Define y
Y = ot.Sample(size, 1)
for i in range(size):
    Y[i, 0] = 1.0 + 0.1 * X[i, 0] + 10.0 * \
        X[i, 0] * X[i, 0] + 0.1 * ot.DistFunc.rNormal()
test = ot.LinearModelAlgorithm(X, Y)
result = test.getResult()
# model
branin = ot.SymbolicFunction(['x1', 'x2'], [
    '((x2-(5.1/(4*_pi^2))*x1^2+5*x1/_pi-6)^2+10*(1-1/8*_pi)*cos(x1)+10-54.8104)/51.9496',
    '0.96'
])
transfo = ot.SymbolicFunction(['u1', 'u2'], ['15*u1-5', '15*u2'])
model = ot.ComposedFunction(branin, transfo)

# problem
problem = ot.OptimizationProblem()
problem.setObjective(model)
bounds = ot.Interval([0.0] * dim, [1.0] * dim)
problem.setBounds(bounds)

# design
experiment = ot.Box([1, 1])
inputSample = experiment.generate()
modelEval = model(inputSample)
outputSample = modelEval.getMarginal(0)

# first kriging model
covarianceModel = ot.SquaredExponential([0.3007, 0.2483], [0.981959])
basis = ot.ConstantBasisFactory(dim).build()
kriging = ot.KrigingAlgorithm(inputSample, outputSample, covarianceModel,
                              basis)
noise = list(map(lambda x: x[1], modelEval))
kriging.setNoise(noise)
kriging.run()

# algo
algo = ot.EfficientGlobalOptimization(problem, kriging.getResult())
    def drawContour(self, drawData=False, drawOutliers=True):
        """Draw contour.

        If :attr:`drawData`, the whole sample is drawn. Otherwise, depending on
        :attr:`drawOutliers` it will either show the outliers or the inliers
        only.

        :param bool drawData: Plot inliers and outliers.
        :param bool drawOutliers: Whether to draw inliers or outliers.
        :returns: figure, axes and OpenTURNS Graph object.
        :rtypes: Matplotlib figure instances, Matplotlib AxesSubplot instances,
          :class:`openturns.Graph`
        """
        plabels = self.sample.getDescription()

        # Bivariate space
        fig = plt.figure(figsize=(10, 10))
        sub_ax = []  # Axis stored as a list
        sub_graph = []
        # Axis are created and stored top to bottom, left to right
        for i in range(self.dim):
            for j in range(self.dim):
                k = i + j * self.dim + 1

                if i <= j:  # lower triangle
                    ax = fig.add_subplot(self.dim, self.dim, k)
                    graph = ot.Graph('', '', '', True, 'topright')

                if i == j:  # diag
                    pdf_graph = self.distribution.getMarginal(i).drawPDF()
                    graph.add(pdf_graph)

                elif i < j:  # lower corners
                    # Use a regular grid to compute probability response surface
                    X1min = self.sample[:, i].getMin()[0]
                    X1max = self.sample[:, i].getMax()[0]
                    X2min = self.sample[:, j].getMin()[0]
                    X2max = self.sample[:, j].getMax()[0]

                    xx = ot.Box([self.numberOfPointsInXAxis],
                                ot.Interval([X1min], [X1max])).generate()

                    yy = ot.Box([self.numberOfPointsInXAxis],
                                ot.Interval([X2min], [X2max])).generate()

                    xy = ot.Box([self.numberOfPointsInXAxis, self.numberOfPointsInXAxis],
                                ot.Interval([X1min, X2min], [X1max, X2max])).generate()

                    data = self.distribution.getMarginal([i, j]).computePDF(xy)

                    # Label using percentage instead of probability
                    n_contours = len(self.contoursAlpha)
                    labels = ["%.0f %%" % (self.contoursAlpha[i] * 100)
                              for i in range(n_contours)]

                    contour = ot.Contour(xx, yy, data, self.pvalues,
                                         ot.Description(labels))
                    contour.setColor('black')

                    graph.add(contour)

                    sample_ = np.array(self.sample)[:, [i, j]]

                    if drawData:
                        inliers_ = self.drawInliers(sample=sample_)
                        outliers_ = self.drawOutliers(sample=sample_)

                        if inliers_ is not None:
                            graph.add(inliers_)
                        if outliers_ is not None:
                            graph.add(outliers_)

                    elif drawOutliers:
                        outliers_ = self.drawOutliers(sample=sample_)
                        if outliers_ is not None:
                            graph.add(outliers_)
                    else:
                        inliers_ = self.drawInliers(sample=sample_)
                        if inliers_ is not None:
                            graph.add(inliers_)

                if i == 0:
                    graph.setYTitle(plabels[j])
                if j == (self.dim - 1):
                    graph.setXTitle(plabels[i])

                graph.setLegends([''])
                sub_graph.append(ot.viewer.View(graph, figure=fig, axes=[ax]))
                sub_ax.append(ax)

        return fig, sub_ax, sub_graph
示例#14
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View

nrows = 3
ncols = 4

# coordinates of grid
grid = ot.Box([5, 5], ot.Interval([0.0] * 2, [6.0] * 2))
sample = grid.generate()
grid_x = sample.getMarginal(0)
grid_y = sample.getMarginal(1)

#plt.rc('text', usetex=True)

q_values = [1.0, 0.75, 0.5]
fig = plt.figure()
index = 1
for i in range(nrows):
    q = q_values[i]
    enumerate = ot.HyperbolicAnisotropicEnumerateFunction(2, q)
    for j in range(ncols):
        ax = fig.add_subplot(nrows, ncols, index, aspect=1.0)
        ax.plot(grid_x, grid_y, 'xr')
        strataIndex = j + 3
        strata_x, strata_y = [], []
        strataCardinal = enumerate.getStrataCumulatedCardinal(strataIndex)
        for ii in range(strataCardinal):
            x = enumerate(ii)
            strata_x.append(x[0])
            strata_y.append(x[1])
示例#15
0
print("mean = ", distribution2D.getMean())
print("cov = ", distribution2D.getCovariance())
print("sigma = ", distribution2D.getStandardDeviation())
distribution2D.setBlockMin(3)
distribution2D.setBlockMax(10)

# Build a grid for validation
xMin = distribution2D.getRange().getLowerBound()[0]
xMax = distribution2D.getRange().getUpperBound()[0]
yMin = distribution2D.getRange().getLowerBound()[1]
yMax = distribution2D.getRange().getUpperBound()[1]
# Number of points of discretization
nx = 4
ny = 4
boxParameters = [nx, ny]
boxGrid = ot.Box(boxParameters)
grid = boxGrid.generate()
# scaling box grid
scaleFactor = [0.25 * (xMax - xMin), 0.25 * (yMax - yMin)]
grid *= scaleFactor
# translating
translateFactor = distribution2D.getMean()[0:2]
grid += translateFactor
# Compute PDF
# parameters for theoritical PDF, obtained thanks to Maple
factor = sqrt(2) / (20 * pi)
for index in range(grid.getSize()):
    point = grid[index]
    PDF = distribution2D.computePDF(point)
    # Very small values are not very accurate on x86, skip them
    if (PDF < 1.e-12):
示例#16
0
sample += [5.0, 8.0]
graph = drawBidimensionalSample(sample, "Factorial")
view = viewer.View(graph)

# %%
# Composite design
# ----------------

# %%
experiment = ot.Composite(2, levels)
sample = experiment.generate()
sample *= 2.0
sample += [5.0, 8.0]
graph = drawBidimensionalSample(sample, "Composite")
view = viewer.View(graph)

# %%
# Grid design
# -----------
#

# %%
levels = [3, 4]
experiment = ot.Box(levels)
sample = experiment.generate()
sample *= 2.0
sample += [5.0, 8.0]
graph = drawBidimensionalSample(sample, "Box")
view = viewer.View(graph)
plt.show()
graphModel0.setXTitle(r'$x_1$')
graphModel0.setYTitle(r'$x_2$')
graphModel0.setTitle(r'Isolines of the model : $Y = f(X)$, first marginal')

# %%
# We represent the second marginal of `vecY`.
graphModel1 = f.draw(0, 1, 1, [0.0, 0.0], [-5.0, -5.0], [5.0, 5.0])
graphModel1.setXTitle(r'$x_1$')
graphModel1.setYTitle(r'$x_2$')
graphModel1.setTitle(r'Isolines of the model : $Y = f(X)$, second marginal')

# %%
# We shall now represent the curves delimiting the domain of interest :
#
nx, ny = 15, 15
xx = ot.Box([nx], ot.Interval([-5.0], [5.0])).generate()
yy = ot.Box([ny], ot.Interval([-5.0], [5.0])).generate()
inputData = ot.Box([nx, ny], ot.Interval([-5.0, -5.0], [5.0, 5.0])).generate()
outputData = f(inputData)

# %%
# The contour line associated with the 0.0 value for the first marginal.
mycontour0 = ot.Contour(xx, yy, outputData.getMarginal(0), [0.0], ["0.0"])
mycontour0.setColor("black")
mycontour0.setLineStyle("dashed")
graphModel0.add(mycontour0)

# %%
# The contour line associated with the 1.0 value for the first marginal.
mycontour1 = ot.Contour(xx, yy, outputData.getMarginal(0), [1.0], ["1.0"])
mycontour1.setColor("black")
# %%
# Graphically, both the metamodel and the exact function look the same. The metamodel also has three
# basins around the minima and the value of the metamodel at each minimum location is comparable to
# the exact value of -0.979476. We have roughly two correct digits for each isoline.

# %%
# Standard deviation
# ------------------
#
# We finally take a look at the standard deviation in the :math:`[0,1] \times [0,1]` domain. It may be
# seen as a measure of the error of the metamodel.

# %%
# We discretize the domain with 22 points (N inside points and 2 endpoints) :
N = 20
inputData = ot.Box([N, N]).generate()

# %%
# We compute the conditional variance of the model and take the square root to get the deviation :
condCov = result.getConditionalMarginalVariance(inputData, 0)
condCovSd = sqrt(condCov)

# %%
# As we have previously done we build contours with the following levels ans labels :
levels = [0.01, 0.025, 0.050, 0.075, 0.1, 0.125, 0.150, 0.175]
labels = ['0.01', '0.025', '0.050', '0.075', '0.1', '0.125', '0.150', '0.175']
contour = ot.Contour(N + 2, N + 2, condCovSd)
graph = ot.Graph('', 'x', 'y', True, '')
graph.add(contour)

# %%
import openturns as ot
from math import cos, sin

ot.TESTPREAMBLE()

try:

    # Fix numerical precision
    ot.PlatformInfo.SetNumericalPrecision(2)

    # Kriging use case
    spatialDimension = 2

    # Learning data
    levels = [8, 5]
    box = ot.Box(levels)
    inputSample = box.generate()
    # Scale each direction
    inputSample *= 10

    # Define model
    model = ot.Function(['x', 'y'], ['z'], ['cos(0.5*x) + sin(y)'])
    outputSample = model(inputSample)

    # 2) Definition of exponential model
    covarianceModel = ot.SquaredExponential([1.988, 0.924], [3.153])

    # 3) Basis definition
    basisCollection = ot.BasisCollection(
        1,
        ot.ConstantBasisFactory(spatialDimension).build())
示例#20
0
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot

levels = [4] * 2
myPlane = ot.Box(levels)
print('myPlane = ', myPlane)
sample = myPlane.generate()
print('sample = ', repr(sample))

myPlane = ot.Box(levels, ot.Interval([7.0, 8.0], [9.0, 16.0]))
print('myPlane = ', myPlane)
sample = myPlane.generate()
print('sample = ', repr(sample))