#! /usr/bin/env python import openturns as ot parameters = ot.GammaMuSigma(0.1, 0.489898, -0.5) distribution = ot.ParametrizedDistribution(parameters) print("Distribution ", distribution) # Is this distribution elliptical ? print("Elliptical = ", distribution.isElliptical()) # Is this distribution continuous ? print("Continuous = ", distribution.isContinuous()) # Test for realization of distribution oneRealization = distribution.getRealization() print("oneRealization=", oneRealization) # Test for sampling size = 10000 oneSample = distribution.getSample(size) print("oneSample first=", oneSample[0], " last=", oneSample[size - 1]) print("mean=", oneSample.computeMean()) print("covariance=", oneSample.computeCovariance()) # Define a point point = ot.Point(distribution.getDimension(), 1.0) print("Point= ", point) # Show PDF and CDF of point
algo.run() tensorResult = algo.getResult() myStudy.add('tensorResult', tensorResult) tensorIn = [0.4] tensorRef = tensorResult.getMetaModel()(tensorIn) # Distribution parameters # ArcsineMuSigma parameter ave ams_parameters = ot.ArcsineMuSigma(8.4, 2.25) myStudy.add('ams_parameters', ams_parameters) # BetaMuSigma parameter save bms_parameters = ot.BetaMuSigma(0.2, 0.6, -1, 2) myStudy.add('bms_parameters', bms_parameters) # GammaMuSigma parameter save gmms_parameters = ot.GammaMuSigma(1.5, 2.5, -0.5) myStudy.add('gmms_parameters', gmms_parameters) # GumbelMuSigma parameter save gms_parameters = ot.GumbelMuSigma(1.5, 1.3) myStudy.add('gms_parameters', gms_parameters) # LogNormalMuSigma parameter save lnms_parameters = ot.LogNormalMuSigma(30000.0, 9000.0, 15000) myStudy.add('lnms_parameters', lnms_parameters) # LogNormalMuSigmaOverMu parameter save lnmsm_parameters = ot.LogNormalMuSigmaOverMu(0.63, 5.24, -0.5) myStudy.add('lnmsm_parameters', lnmsm_parameters) # WeibullMinMuSigma parameter save wms_parameters = ot.WeibullMinMuSigma(1.3, 1.23, -0.5) myStudy.add('wms_parameters', wms_parameters) # MemoizeFunction
#! /usr/bin/env python import openturns as ot distParams = [] distParams.append(ot.ArcsineMuSigma(8.4, 2.25)) distParams.append(ot.BetaMuSigma(0.2, 0.6, -1, 2)) distParams.append(ot.GammaMuSigma(1.5, 2.5, -0.5)) distParams.append(ot.GumbelLambdaGamma(0.6, 6.0)) distParams.append(ot.GumbelMuSigma(1.5, 1.3)) distParams.append(ot.LogNormalMuErrorFactor(0.63, 1.5, -0.5)) distParams.append(ot.LogNormalMuSigma(0.63, 3.3, -0.5)) distParams.append(ot.LogNormalMuSigmaOverMu(0.63, 5.24, -0.5)) distParams.append(ot.WeibullMaxMuSigma(1.3, 1.23, 3.1)) distParams.append(ot.WeibullMinMuSigma(1.3, 1.23, -0.5)) for distParam in distParams: print('Distribution Parameters ', repr(distParam)) print('Distribution Parameters ', distParam) non_native = distParam.getValues() desc = distParam.getDescription() print('non-native=', non_native, desc) native = distParam.evaluate() print('native=', native) non_native = distParam.inverse(native) print('non-native=', non_native) print('built dist=', distParam.getDistribution()) # derivative of the native parameters with regards the parameters of the