示例#1
0
 def test_computeLogPDF_diagonal_case(self):
     """Test InverseWishart.computeLogPDF in the case of diagonal matrices"""
     dimension, DoF = self.dimension, self.DoF
     k = 0.5 * (DoF + dimension - 1)
     diagX = ot.Uniform(0.5, 1.).getSample(dimension)
     Scale = ot.CovarianceMatrix(dimension)
     X = ot.CovarianceMatrix(dimension)
     for d in range(dimension):
         Scale[d, d], X[d, d] = self.Scale[d, d], diagX[d, 0]
     inverse_wishart = ot.InverseWishart(Scale, DoF)
     logdensity = inverse_wishart.computeLogPDF(X)
     logratio = - self.logmultigamma(dimension, 0.5 * DoF) \
         + dimension * ot.SpecFunc_LnGamma(0.5 * (DoF + dimension - 1))
     for d in range(dimension):
         inverse_gamma = ot.InverseGamma(k, 2. / Scale[d, d])
         logdensity = logdensity - inverse_gamma.computeLogPDF(diagX[d, 0])
         logratio = logratio + 0.5 * \
             (1 - dimension) * log(0.5 * Scale[d, d])
     assert_almost_equal(logdensity, logratio)
示例#2
0
 def setUpClass(cls):
     # attributes to compare a one-dimensional InverseWishart to the
     # equivalent InverseGamma distribution
     U = ot.Uniform(0., 1.)
     scale = 10. * U.getRealization()[0]
     DoF = 3. + U.getRealization()[0]  # Degrees of Freedom
     cls.k, cls.beta = 0.5 * DoF, 0.5 * scale
     cls.one_dimensional_inverse_wishart \
         = ot.InverseWishart(ot.CovarianceMatrix([[scale]]), DoF)
     cls.inverse_gamma = ot.InverseGamma(cls.k, 1. / cls.beta)
     # attributes to test a multi-dimensional InverseWishart
     cls.dimension = 5
     cls.DoF = cls.dimension + 3 + U.getRealization()[0]
     cls.L = ot.TriangularMatrix(cls.dimension)
     diagL = ot.Uniform(0.5, 1.).getSample(cls.dimension)
     cls.determinant = 1.
     for i in range(cls.dimension):
         cls.determinant *= diagL[i, 0]
         cls.L[i, i] = diagL[i, 0]
         for j in range(i):
             cls.L[i, j] = U.getRealization()[0]
     cls.determinant *= cls.determinant
     cls.Scale = ot.CovarianceMatrix(cls.L * cls.L.transpose())
示例#3
0
def InverseGamma(lambda_=1.0, k=1.0):
    """
    InverseGamma compatibility shim.
    """
    return ot.InverseGamma(k, lambda_)
示例#4
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if (ot.InverseGamma().__class__.__name__=='ComposedDistribution'):
    correlation = ot.CorrelationMatrix(2)
    correlation[1, 0] = 0.25
    aCopula = ot.NormalCopula(correlation)
    marginals = [ot.Normal(1.0, 2.0), ot.Normal(2.0, 3.0)]
    distribution = ot.ComposedDistribution(marginals, aCopula)
elif (ot.InverseGamma().__class__.__name__=='CumulativeDistributionNetwork'):
    distribution = ot.CumulativeDistributionNetwork([ot.Normal(2),ot.Dirichlet([0.5, 1.0, 1.5])], ot.BipartiteGraph([[0,1], [0,1]]))
else:
    distribution = ot.InverseGamma()
dimension = distribution.getDimension()
if dimension <= 2:
    if distribution.getDimension() == 1:
        distribution.setDescription(['$x$'])
        pdf_graph = distribution.drawPDF()
        cdf_graph = distribution.drawCDF()
        fig = plt.figure(figsize=(10, 4))
        plt.suptitle(str(distribution))
        pdf_axis = fig.add_subplot(121)
        cdf_axis = fig.add_subplot(122)
        View(pdf_graph, figure=fig, axes=[pdf_axis], add_legend=False)
        View(cdf_graph, figure=fig, axes=[cdf_axis], add_legend=False)
    else:
        distribution.setDescription(['$x_1$', '$x_2$'])
        pdf_graph = distribution.drawPDF()
        fig = plt.figure(figsize=(10, 5))
        plt.suptitle(str(distribution))
        pdf_axis = fig.add_subplot(111)
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if ot.InverseGamma().__class__.__name__ == 'ComposedDistribution':
    correlation = ot.CorrelationMatrix(2)
    correlation[1, 0] = 0.25
    aCopula = ot.NormalCopula(correlation)
    marginals = [ot.Normal(1.0, 2.0), ot.Normal(2.0, 3.0)]
    distribution = ot.ComposedDistribution(marginals, aCopula)
elif ot.InverseGamma().__class__.__name__ == 'CumulativeDistributionNetwork':
    distribution = ot.CumulativeDistributionNetwork([ot.Normal(2),ot.Dirichlet([0.5, 1.0, 1.5])], ot.BipartiteGraph([[0,1], [0,1]]))
elif ot.InverseGamma().__class__.__name__ == 'Histogram':
    distribution = ot.Histogram([-1.0, 0.5, 1.0, 2.0], [0.45, 0.4, 0.15])
else:
    distribution = ot.InverseGamma()
dimension = distribution.getDimension()
if dimension == 1:
    distribution.setDescription(['$x$'])
    pdf_graph = distribution.drawPDF()
    cdf_graph = distribution.drawCDF()
    fig = plt.figure(figsize=(10, 4))
    plt.suptitle(str(distribution))
    pdf_axis = fig.add_subplot(121)
    cdf_axis = fig.add_subplot(122)
    View(pdf_graph, figure=fig, axes=[pdf_axis], add_legend=False)
    View(cdf_graph, figure=fig, axes=[cdf_axis], add_legend=False)
elif dimension == 2:
    distribution.setDescription(['$x_1$', '$x_2$'])
    pdf_graph = distribution.drawPDF()
    fig = plt.figure(figsize=(10, 5))
    plt.suptitle(str(distribution))