示例#1
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if ot.Rayleigh().__class__.__name__ == 'ComposedDistribution':
    correlation = ot.CorrelationMatrix(2)
    correlation[1, 0] = 0.25
    aCopula = ot.NormalCopula(correlation)
    marginals = [ot.Normal(1.0, 2.0), ot.Normal(2.0, 3.0)]
    distribution = ot.ComposedDistribution(marginals, aCopula)
elif ot.Rayleigh().__class__.__name__ == 'CumulativeDistributionNetwork':
    distribution = ot.CumulativeDistributionNetwork([ot.Normal(2),ot.Dirichlet([0.5, 1.0, 1.5])], ot.BipartiteGraph([[0,1], [0,1]]))
elif ot.Rayleigh().__class__.__name__ == 'Histogram':
    distribution = ot.Histogram([-1.0, 0.5, 1.0, 2.0], [0.45, 0.4, 0.15])
else:
    distribution = ot.Rayleigh()
dimension = distribution.getDimension()
if dimension == 1:
    distribution.setDescription(['$x$'])
    pdf_graph = distribution.drawPDF()
    cdf_graph = distribution.drawCDF()
    fig = plt.figure(figsize=(10, 4))
    plt.suptitle(str(distribution))
    pdf_axis = fig.add_subplot(121)
    cdf_axis = fig.add_subplot(122)
    View(pdf_graph, figure=fig, axes=[pdf_axis], add_legend=False)
    View(cdf_graph, figure=fig, axes=[cdf_axis], add_legend=False)
elif dimension == 2:
    distribution.setDescription(['$x_1$', '$x_2$'])
    pdf_graph = distribution.drawPDF()
    fig = plt.figure(figsize=(10, 5))
    plt.suptitle(str(distribution))
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if ot.Rayleigh().__class__.__name__ == 'Bernoulli':
    distribution = ot.Bernoulli(0.7)
elif ot.Rayleigh().__class__.__name__ == 'Binomial':
    distribution = ot.Binomial(5, 0.2)
elif ot.Rayleigh().__class__.__name__ == 'ComposedDistribution':
    copula = ot.IndependentCopula(2)
    marginals = [ot.Uniform(1.0, 2.0), ot.Normal(2.0, 3.0)]
    distribution = ot.ComposedDistribution(marginals, copula)
elif ot.Rayleigh().__class__.__name__ == 'CumulativeDistributionNetwork':
    coll = [ot.Normal(2), ot.Dirichlet([0.5, 1.0, 1.5])]
    distribution = ot.CumulativeDistributionNetwork(
        coll, ot.BipartiteGraph([[0, 1], [0, 1]]))
elif ot.Rayleigh().__class__.__name__ == 'Histogram':
    distribution = ot.Histogram([-1.0, 0.5, 1.0, 2.0], [0.45, 0.4, 0.15])
elif ot.Rayleigh().__class__.__name__ == 'KernelMixture':
    kernel = ot.Uniform()
    sample = ot.Normal().getSample(5)
    bandwith = [1.0]
    distribution = ot.KernelMixture(kernel, bandwith, sample)
elif ot.Rayleigh().__class__.__name__ == 'MaximumDistribution':
    coll = [
        ot.Uniform(2.5, 3.5),
        ot.LogUniform(1.0, 1.2),
        ot.Triangular(2.0, 3.0, 4.0)
    ]
    distribution = ot.MaximumDistribution(coll)
elif ot.Rayleigh().__class__.__name__ == 'Multinomial':
    distribution = ot.Multinomial(5, [0.2])
示例#3
0
def clean(polynomial):
    coefficients = polynomial.getCoefficients()
    for i in range(coefficients.getDimension()):
        if abs(coefficients[i]) < 1.0e-12:
            coefficients[i] = 0.0
    return ot.UniVariatePolynomial(coefficients)


iMax = 5
distributionCollection = [
    ot.Laplace(1.0, 0.0),
    ot.Logistic(0.0, 1.0),
    ot.Normal(0.0, 1.0),
    ot.Normal(1.0, 1.0),
    ot.Rayleigh(1.0),
    ot.Student(22.0),
    ot.Triangular(-1.0, 0.3, 1.0),
    ot.Uniform(-1.0, 1.0),
    ot.Uniform(-1.0, 3.0),
    ot.Weibull(1.0, 3.0),
    ot.Beta(1.0, 3.0, -1.0, 1.0),
    ot.Beta(0.5, 1.0, -1.0, 1.0),
    ot.Beta(0.5, 1.0, -2.0, 3.0),
    ot.Gamma(1.0, 3.0),
    ot.Arcsine()
]
for n in range(len(distributionCollection)):
    distribution = distributionCollection[n]
    name = distribution.getClassName()
    polynomialFactory = ot.StandardDistributionPolynomialFactory(
示例#4
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if (ot.Rayleigh().__class__.__name__ == 'ComposedDistribution'):
    correlation = ot.CorrelationMatrix(2)
    correlation[1, 0] = 0.25
    aCopula = ot.NormalCopula(correlation)
    marginals = [ot.Normal(1.0, 2.0), ot.Normal(2.0, 3.0)]
    distribution = ot.ComposedDistribution(marginals, aCopula)
elif (ot.Rayleigh().__class__.__name__ == 'CumulativeDistributionNetwork'):
    distribution = ot.CumulativeDistributionNetwork(
        [ot.Normal(2), ot.Dirichlet([0.5, 1.0, 1.5])],
        ot.BipartiteGraph([[0, 1], [0, 1]]))
else:
    distribution = ot.Rayleigh()
dimension = distribution.getDimension()
if dimension <= 2:
    if distribution.getDimension() == 1:
        distribution.setDescription(['$x$'])
        pdf_graph = distribution.drawPDF()
        cdf_graph = distribution.drawCDF()
        fig = plt.figure(figsize=(10, 4))
        plt.suptitle(str(distribution))
        pdf_axis = fig.add_subplot(121)
        cdf_axis = fig.add_subplot(122)
        View(pdf_graph, figure=fig, axes=[pdf_axis], add_legend=False)
        View(cdf_graph, figure=fig, axes=[cdf_axis], add_legend=False)
    else:
        distribution.setDescription(['$x_1$', '$x_2$'])
        pdf_graph = distribution.drawPDF()
        fig = plt.figure(figsize=(10, 5))