示例#1
0
def set_cpu_extensions(core: IECore, cpu_ext: str):
    core.add_extension(cpu_ext, "CPU")
示例#2
0
def main():
    log.basicConfig(format="[ %(levelname)s ] %(message)s",
                    level=log.INFO,
                    stream=sys.stdout)
    args = build_argparser().parse_args()
    log.info("Loading Inference Engine")
    ie = IECore()

    # ---1. Read a model in OpenVINO Intermediate Representation (.xml and .bin files) or ONNX (.onnx file) format ---
    model = args.model
    log.info(f"Loading network:\n\t{model}")
    net = ie.read_network(model=model)
    func = ng.function_from_cnn(net)
    ops = func.get_ordered_ops()
    # -----------------------------------------------------------------------------------------------------

    # ------------- 2. Load Plugin for inference engine and extensions library if specified --------------
    log.info("Device info:")
    versions = ie.get_versions(args.device)
    print("{}{}".format(" " * 8, args.device))
    print("{}MKLDNNPlugin version ......... {}.{}".format(
        " " * 8, versions[args.device].major, versions[args.device].minor))
    print("{}Build ........... {}".format(" " * 8,
                                          versions[args.device].build_number))

    if args.cpu_extension and "CPU" in args.device:
        ie.add_extension(args.cpu_extension, "CPU")
        log.info("CPU extension loaded: {}".format(args.cpu_extension))
    # -----------------------------------------------------------------------------------------------------

    # --------------------------- 3. Read and preprocess input --------------------------------------------

    print("inputs number: " + str(len(net.input_info.keys())))

    for input_key in net.input_info:
        print("input shape: " +
              str(net.input_info[input_key].input_data.shape))
        print("input key: " + input_key)
        if len(net.input_info[input_key].input_data.layout) == 4:
            n, c, h, w = net.input_info[input_key].input_data.shape

    images = np.ndarray(shape=(n, c, h, w))
    images_hw = []
    for i in range(n):
        image = cv2.imread(args.input)
        ih, iw = image.shape[:-1]
        images_hw.append((ih, iw))
        log.info("File was added: ")
        log.info("        {}".format(args.input[i]))
        if (ih, iw) != (h, w):
            log.warning("Image {} is resized from {} to {}".format(
                args.input[i], image.shape[:-1], (h, w)))
            image = cv2.resize(image, (w, h))
        image = image.transpose(
            (2, 0, 1))  # Change data layout from HWC to CHW
        images[i] = image

    # -----------------------------------------------------------------------------------------------------

    # --------------------------- 4. Configure input & output ---------------------------------------------
    # --------------------------- Prepare input blobs -----------------------------------------------------
    log.info("Preparing input blobs")
    assert (len(net.input_info.keys()) == 1 or len(net.input_info.keys())
            == 2), "Sample supports topologies only with 1 or 2 inputs"
    out_blob = next(iter(net.outputs))
    input_name, input_info_name = "", ""

    for input_key in net.input_info:
        if len(net.input_info[input_key].layout) == 4:
            input_name = input_key
            net.input_info[input_key].precision = 'U8'
        elif len(net.input_info[input_key].layout) == 2:
            input_info_name = input_key
            net.input_info[input_key].precision = 'FP32'
            if net.input_info[input_key].input_data.shape[1] != 3 and net.input_info[input_key].input_data.shape[1] != 6 or \
                net.input_info[input_key].input_data.shape[0] != 1:
                log.error(
                    'Invalid input info. Should be 3 or 6 values length.')

    data = {}
    data[input_name] = images

    if input_info_name != "":
        infos = np.ndarray(shape=(n, c), dtype=float)
        for i in range(n):
            infos[i, 0] = h
            infos[i, 1] = w
            infos[i, 2] = 1.0
        data[input_info_name] = infos

    # --------------------------- Prepare output blobs ----------------------------------------------------
    log.info('Preparing output blobs')

    output_name, output_info = "", net.outputs[next(iter(net.outputs.keys()))]
    output_ops = {op.friendly_name : op for op in ops \
                  if op.friendly_name in net.outputs and op.get_type_name() == "DetectionOutput"}
    if len(output_ops) != 0:
        output_name, output_info = output_ops.popitem()

    if output_name == "":
        log.error("Can't find a DetectionOutput layer in the topology")

    output_dims = output_info.shape
    if len(output_dims) != 4:
        log.error("Incorrect output dimensions for SSD model")
    max_proposal_count, object_size = output_dims[2], output_dims[3]

    if object_size != 7:
        log.error("Output item should have 7 as a last dimension")

    output_info.precision = "FP32"
    # -----------------------------------------------------------------------------------------------------

    # --------------------------- Performing inference ----------------------------------------------------
    log.info("Loading model to the device")
    exec_net = ie.load_network(network=net, device_name=args.device)
    log.info("Creating infer request and starting inference")
    res = exec_net.infer(inputs=data)
    # -----------------------------------------------------------------------------------------------------

    # --------------------------- Read and postprocess output ---------------------------------------------
    log.info("Processing output blobs")
    res = res[out_blob]
    boxes, classes = {}, {}
    data = res[0][0]
    for number, proposal in enumerate(data):
        if proposal[2] > 0:
            imid = np.int(proposal[0])
            ih, iw = images_hw[imid]
            label = np.int(proposal[1])
            confidence = proposal[2]
            xmin = np.int(iw * proposal[3])
            ymin = np.int(ih * proposal[4])
            xmax = np.int(iw * proposal[5])
            ymax = np.int(ih * proposal[6])
            print("[{},{}] element, prob = {:.6}    ({},{})-({},{}) batch id : {}" \
                  .format(number, label, confidence, xmin, ymin, xmax, ymax, imid), end="")
            if proposal[2] > 0.5:
                print(" WILL BE PRINTED!")
                if not imid in boxes.keys():
                    boxes[imid] = []
                boxes[imid].append([xmin, ymin, xmax, ymax])
                if not imid in classes.keys():
                    classes[imid] = []
                classes[imid].append(label)
            else:
                print()

    for imid in classes:
        tmp_image = cv2.imread(args.input[imid])
        for box in boxes[imid]:
            cv2.rectangle(tmp_image, (box[0], box[1]), (box[2], box[3]),
                          (232, 35, 244), 2)
        cv2.imwrite("out.bmp", tmp_image)
        log.info("Image out.bmp created!")
    # -----------------------------------------------------------------------------------------------------

    log.info("Execution successful\n")
    log.info(
        "This sample is an API example, for any performance measurements please use the dedicated benchmark_app tool"
    )
示例#3
0
class Network:
    """
    Load and configure inference plugins for the specified target devices 
    and performs synchronous and asynchronous modes for the specified infer requests.
    """
    def __init__(self):
        self.net = None
        self.plugin = None
        self.input_blob = None
        self.out_blob = None
        self.net_plugin = None
        self.infer_request_handle = None

    def load_model(self,
                   model,
                   device,
                   input_size,
                   output_size,
                   num_requests,
                   cpu_extension=None,
                   plugin=None):
        """
         Loads a network and an image to the Inference Engine plugin.
        :param model: .xml file of pre trained model
        :param cpu_extension: extension for the CPU device
        :param device: Target device
        :param input_size: Number of input layers
        :param output_size: Number of output layers
        :param num_requests: Index of Infer request value. Limited to device capabilities.
        :param plugin: Plugin for specified device
        :return:  Shape of input layer
        """

        model_xml = model
        model_bin = os.path.splitext(model_xml)[0] + ".bin"
        # Plugin initialization for specified device
        # and load extensions library if specified
        if not plugin:
            log.info("Initializing plugin for {} device...".format(device))
            self.plugin = IECore()
        else:
            self.plugin = plugin

        if cpu_extension and 'CPU' in device:
            self.plugin.add_extension(cpu_extension, "CPU")

        # Read IR
        log.info("Reading IR...")
        self.net = IENetwork(model=model_xml, weights=model_bin)
        log.info("Loading IR to the plugin...")

        if "CPU" in device:
            supported_layers = self.plugin.query_network(self.net, "CPU")
            not_supported_layers = \
                [l for l in self.net.layers.keys() if l not in supported_layers]
            if len(not_supported_layers) != 0:
                log.error("Following layers are not supported by "
                          "the plugin for specified device {}:\n {}".format(
                              device, ', '.join(not_supported_layers)))
                log.error("Please try to specify cpu extensions library path"
                          " in command line parameters using -l "
                          "or --cpu_extension command line argument")
                sys.exit(1)

        if num_requests == 0:
            # Loads network read from IR to the plugin
            self.net_plugin = self.plugin.load_network(network=self.net,
                                                       device_name=device)
        else:
            self.net_plugin = self.plugin.load_network(
                network=self.net,
                num_requests=num_requests,
                device_name=device)
            # log.error("num_requests != 0")

        self.input_blob = next(iter(self.net.inputs))
        self.out_blob = next(iter(self.net.outputs))
        assert len(self.net.inputs.keys()) == input_size, \
            "Supports only {} input topologies".format(len(self.net.inputs))
        assert len(self.net.outputs) == output_size, \
            "Supports only {} output topologies".format(len(self.net.outputs))

        return self.plugin, self.get_input_shape()

    def get_input_shape(self):
        """
        Gives the shape of the input layer of the network.
        :return: None
        """
        return self.net.inputs[self.input_blob].shape

    def performance_counter(self, request_id):
        """
        Queries performance measures per layer to get feedback of what is the
        most time consuming layer.
        :param request_id: Index of Infer request value. Limited to device capabilities
        :return: Performance of the layer  
        """
        perf_count = self.net_plugin.requests[request_id].get_perf_counts()
        return perf_count

    def exec_net(self, request_id, frame):
        """
        Starts asynchronous inference for specified request.
        :param request_id: Index of Infer request value. Limited to device capabilities.
        :param frame: Input image
        :return: Instance of Executable Network class
        """
        self.infer_request_handle = self.net_plugin.start_async(
            request_id=request_id, inputs={self.input_blob: frame})
        return self.net_plugin

    def wait(self, request_id):
        """
        Waits for the result to become available.
        :param request_id: Index of Infer request value. Limited to device capabilities.
        :return: Timeout value
        """
        wait_process = self.net_plugin.requests[request_id].wait(-1)
        return wait_process

    def get_output(self, request_id, output=None):
        """
        Gives a list of results for the output layer of the network.
        :param request_id: Index of Infer request value. Limited to device capabilities.
        :param output: Name of the output layer
        :return: Results for the specified request
        """
        if output:
            res = self.infer_request_handle.outputs[output]
        else:
            res = self.net_plugin.requests[request_id].outputs[self.out_blob]
        return res

    def clean(self):
        """
        Deletes all the instances
        :return: None
        """
        del self.net_plugin
        del self.plugin
        del self.net
class Network:
    """
    Load and configure inference plugins for the specified target devices 
    and performs synchronous and asynchronous modes for the specified infer requests.
    """

    def __init__(self):
        ### TODO: Initialize any class variables desired ###
        self.plugin = None
        self.network = None
        self.input_blob = None
        self.output_blob = None
        self.net_plugin = None
        self.infer_request = None
        self.async_infer_handler = None

    def load_model(self, model, device="CPU", cpu_extension=None, console_output= False):

        ### TODO: Load the model ###

        # Initialize the plugin
        self.plugin = IECore()

        # Read the IR as a IENetwork
        model_xml = model
        model_bin = os.path.splitext(model_xml)[0] + ".bin"

        self.network = IENetwork(model=model_xml, weights=model_bin)

        ### TODO: Check for supported layers ###
        #get supported layers
        supported_layers = self.plugin.query_network(self.network, device)

        # Check for any unsupported layers, and let the user
        #  know if anything is missing. Exit the program, if so.
        unsupported_layers = [l for l in self.network.layers.keys() if l not in supported_layers]
        if len(unsupported_layers) != 0:
            # log.error("Unsupported layers found: {}".format(unsupported_layers))
            # log.error("Check whether extensions are available to add to IECore.")
            # exit(1)
            ### TODO: Add any necessary extensions ###
            # Add a CPU extension, if applicable
            if cpu_extension and "CPU" in device:
                self.plugin.add_extension(cpu_extension, device)


        # Load the IENetwork into the plugin
        self.net_plugin = self.plugin.load_network(self.network, device)

        # Get the input layer
        self.input_blob = next(iter(self.network.inputs))
        self.output_blob = next(iter(self.network.outputs))

        ### TODO: Return the loaded inference plugin ###
        ### Note: You may need to update the function parameters. ###
        return

    def get_input_shape(self):
        ### TODO: Return the shape of the input layer ###
        input_shapes = {input:self.network.inputs[input].shape for input in self.network.inputs}
        return input_shapes

    def exec_net(self, request_id, net_input):
        ### TODO: Start an asynchronous request ###
        ### TODO: Return any necessary information ###
        ### Note: You may need to update the function parameters. ###
        self.async_infer_handler = self.net_plugin.start_async(
            request_id=request_id, inputs=net_input)

        return

    def wait(self, request_id):
        ### TODO: Wait for the request to be complete. ###
        ### TODO: Return any necessary information ###
        ### Note: You may need to update the function parameters. ###
        return self.net_plugin.requests[request_id].wait(-1)

    def get_output(self, request_id, output=None):
        ### TODO: Extract and return the output results
        ### Note: You may need to update the function parameters. ###
        if output:
            return self.async_infer_handler.outputs[output]
        else:
            return self.net_plugin.requests[request_id].outputs[self.output_blob]

    def clean(self):
        """
        Deletes all the instances
        :return: None
        """
        del self.net_plugin
        del self.plugin
        del self.network
示例#5
0
def main():
    log.basicConfig(format='[ %(levelname)s ] %(message)s',
                    level=log.INFO,
                    stream=sys.stdout)
    args = build_argparser().parse_args()

    # Plugin initialization for specified device and load extensions library if specified.
    log.info('Creating Inference Engine...')
    ie = IECore()
    if args.cpu_extension and 'CPU' in args.device:
        ie.add_extension(args.cpu_extension, 'CPU')
    # Read IR
    log.info('Loading Mask-RCNN network')
    mask_rcnn_net = ie.read_network(
        args.mask_rcnn_model,
        os.path.splitext(args.mask_rcnn_model)[0] + '.bin')

    log.info('Loading encoder part of text recognition network')
    text_enc_net = ie.read_network(
        args.text_enc_model,
        os.path.splitext(args.text_enc_model)[0] + '.bin')

    log.info('Loading decoder part of text recognition network')
    text_dec_net = ie.read_network(
        args.text_dec_model,
        os.path.splitext(args.text_dec_model)[0] + '.bin')

    if 'CPU' in args.device:
        supported_layers = ie.query_network(mask_rcnn_net, 'CPU')
        not_supported_layers = [
            l for l in mask_rcnn_net.layers.keys() if l not in supported_layers
        ]
        if len(not_supported_layers) != 0:
            log.error(
                'Following layers are not supported by the plugin for specified device {}:\n {}'
                .format(args.device, ', '.join(not_supported_layers)))
            log.error(
                "Please try to specify cpu extensions library path in sample's command line parameters using -l "
                "or --cpu_extension command line argument")
            sys.exit(1)

    required_input_keys = {'im_data', 'im_info'}
    assert required_input_keys == set(mask_rcnn_net.inputs.keys()), \
        'Demo supports only topologies with the following input keys: {}'.format(', '.join(required_input_keys))
    required_output_keys = {
        'boxes', 'scores', 'classes', 'raw_masks', 'text_features'
    }
    assert required_output_keys.issubset(mask_rcnn_net.outputs.keys()), \
        'Demo supports only topologies with the following output keys: {}'.format(', '.join(required_output_keys))

    n, c, h, w = mask_rcnn_net.inputs['im_data'].shape
    assert n == 1, 'Only batch 1 is supported by the demo application'

    log.info('Loading IR to the plugin...')
    mask_rcnn_exec_net = ie.load_network(network=mask_rcnn_net,
                                         device_name=args.device,
                                         num_requests=2)
    text_enc_exec_net = ie.load_network(network=text_enc_net,
                                        device_name=args.device)
    text_dec_exec_net = ie.load_network(network=text_dec_net,
                                        device_name=args.device)

    hidden_shape = text_dec_net.inputs[args.trd_input_prev_hidden].shape

    del mask_rcnn_net
    del text_enc_net
    del text_dec_net

    try:
        input_source = int(args.input_source)
    except ValueError:
        input_source = args.input_source

    if os.path.isdir(input_source):
        cap = FolderCapture(input_source)
    else:
        cap = cv2.VideoCapture(input_source)

    if not cap.isOpened():
        log.error('Failed to open "{}"'.format(args.input_source))
    if isinstance(cap, cv2.VideoCapture):
        cap.set(cv2.CAP_PROP_BUFFERSIZE, 1)

    if args.no_track:
        tracker = None
    else:
        tracker = StaticIOUTracker()

    visualizer = Visualizer(['__background__', 'text'],
                            show_boxes=args.show_boxes,
                            show_scores=args.show_scores)

    render_time = 0

    log.info('Starting inference...')
    print(
        "To close the application, press 'CTRL+C' here or switch to the output window and press ESC key"
    )
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        if not args.keep_aspect_ratio:
            # Resize the image to a target size.
            scale_x = w / frame.shape[1]
            scale_y = h / frame.shape[0]
            input_image = cv2.resize(frame, (w, h))
        else:
            # Resize the image to keep the same aspect ratio and to fit it to a window of a target size.
            scale_x = scale_y = min(h / frame.shape[0], w / frame.shape[1])
            input_image = cv2.resize(frame, None, fx=scale_x, fy=scale_y)

        input_image_size = input_image.shape[:2]
        input_image = np.pad(input_image,
                             ((0, h - input_image_size[0]),
                              (0, w - input_image_size[1]), (0, 0)),
                             mode='constant',
                             constant_values=0)
        # Change data layout from HWC to CHW.
        input_image = input_image.transpose((2, 0, 1))
        input_image = input_image.reshape((n, c, h, w)).astype(np.float32)
        input_image_info = np.asarray(
            [[input_image_size[0], input_image_size[1], 1]], dtype=np.float32)

        # Run the net.
        inf_start = time.time()
        outputs = mask_rcnn_exec_net.infer({
            'im_data': input_image,
            'im_info': input_image_info
        })

        # Parse detection results of the current request
        boxes = outputs['boxes']
        scores = outputs['scores']
        classes = outputs['classes'].astype(np.uint32)
        raw_masks = outputs['raw_masks']
        text_features = outputs['text_features']

        # Filter out detections with low confidence.
        detections_filter = scores > args.prob_threshold
        scores = scores[detections_filter]
        classes = classes[detections_filter]
        boxes = boxes[detections_filter]
        raw_masks = raw_masks[detections_filter]
        text_features = text_features[detections_filter]

        boxes[:, 0::2] /= scale_x
        boxes[:, 1::2] /= scale_y
        masks = []
        for box, cls, raw_mask in zip(boxes, classes, raw_masks):
            raw_cls_mask = raw_mask[cls, ...]
            mask = segm_postprocess(box, raw_cls_mask, frame.shape[0],
                                    frame.shape[1])
            masks.append(mask)

        texts = []
        for feature in text_features:
            feature = text_enc_exec_net.infer({'input': feature})['output']
            feature = np.reshape(feature,
                                 (feature.shape[0], feature.shape[1], -1))
            feature = np.transpose(feature, (0, 2, 1))

            hidden = np.zeros(hidden_shape)
            prev_symbol_index = np.ones((1, )) * SOS_INDEX

            text = ''
            for i in range(MAX_SEQ_LEN):
                decoder_output = text_dec_exec_net.infer({
                    args.trd_input_prev_symbol:
                    prev_symbol_index,
                    args.trd_input_prev_hidden:
                    hidden,
                    args.trd_input_encoder_outputs:
                    feature
                })
                symbols_distr = decoder_output[args.trd_output_symbols_distr]
                prev_symbol_index = int(np.argmax(symbols_distr, axis=1))
                if prev_symbol_index == EOS_INDEX:
                    break
                text += args.alphabet[prev_symbol_index]
                hidden = decoder_output[args.trd_output_cur_hidden]

            texts.append(text)

        inf_end = time.time()
        inf_time = inf_end - inf_start

        render_start = time.time()

        if len(boxes) and args.raw_output_message:
            log.info('Detected boxes:')
            log.info(
                '  Class ID | Confidence |     XMIN |     YMIN |     XMAX |     YMAX '
            )
            for box, cls, score, mask in zip(boxes, classes, scores, masks):
                log.info(
                    '{:>10} | {:>10f} | {:>8.2f} | {:>8.2f} | {:>8.2f} | {:>8.2f} '
                    .format(cls, score, *box))

        # Get instance track IDs.
        masks_tracks_ids = None
        if tracker is not None:
            masks_tracks_ids = tracker(masks, classes)

        # Visualize masks.
        frame = visualizer(frame, boxes, classes, scores, masks, texts,
                           masks_tracks_ids)

        # Draw performance stats.
        inf_time_message = 'Inference and post-processing time: {:.3f} ms'.format(
            inf_time * 1000)
        render_time_message = 'OpenCV rendering time: {:.3f} ms'.format(
            render_time * 1000)
        cv2.putText(frame, inf_time_message, (15, 15),
                    cv2.FONT_HERSHEY_COMPLEX, 0.5, (200, 10, 10), 1)
        cv2.putText(frame, render_time_message, (15, 30),
                    cv2.FONT_HERSHEY_COMPLEX, 0.5, (10, 10, 200), 1)

        # Print performance counters.
        if args.perf_counts:
            perf_counts = mask_rcnn_exec_net.requests[0].get_perf_counts()
            log.info('Performance counters:')
            print('{:<70} {:<15} {:<15} {:<15} {:<10}'.format(
                'name', 'layer_type', 'exet_type', 'status', 'real_time, us'))
            for layer, stats in perf_counts.items():
                print('{:<70} {:<15} {:<15} {:<15} {:<10}'.format(
                    layer, stats['layer_type'], stats['exec_type'],
                    stats['status'], stats['real_time']))

        if not args.no_show:
            # Show resulting image.
            cv2.imshow('Results', frame)
        render_end = time.time()
        render_time = render_end - render_start

        if not args.no_show:
            key = cv2.waitKey(args.delay)
            esc_code = 27
            if key == esc_code:
                break

    cv2.destroyAllWindows()
    cap.release()
class HeadPoseModel:
    '''
    Class for the Face Detection Model.
    '''
    def __init__(self, model_name, device='CPU', extensions=None):
        '''
        TODO: Use this to set your instance variables.
        '''
        self.model_name = model_name
        self.device = device
        self.extensions = extensions

        self.model_structure = self.model_name
        self.model_weights = self.model_name.split('.')[0]+'.bin'

        self.core = None
        self.network = None
        self.exec_net = None

        self.input = None
        self.output = None
        self.mode = 'async'
        self.request_id = 0

    def load_model(self):
        '''
        TODO: You will need to complete this method.
        This method is for loading the model to the device specified by the user.
        If your model requires any Plugins, this is where you can load them.
        '''
        self.core = IECore()

        self.network = self.core.read_network(model=self.model_structure, weights=self.model_weights)
        self.exec_net = self.core.load_network(network=self.network, device_name=self.device,num_requests=self.num_requests)
        
        self.input = next(iter(self.network.inputs))
        self.output = next(iter(self.network.outputs))

        return self.exec_net

    def predict(self, image):
        '''
        TODO: You will need to complete this method.
        This method is meant for running predictions on the input image.
        '''
        processed_frame = self.preprocess_input(image)
        self.exec_net.start_async(request_id=self.request_id,inputs={self.input: processed_frame})
        self.exec_net.requests[0].get_perf_counts()

        if self.mode == 'async':
            self.exec_net.requests[0].wait()
            return self.preprocess_output(self.exec_net.requests[0].outputs)
        else:
            if self.exec_net.requests[0].wait(-1) == 0:
                return self.preprocess_output(self.exec_net.requests[0].outputs)

    def check_model(self):
        supported_layers = self.core.query_network(network=self.network, device_name=self.device)
        unsupported_layers = [l for l in self.network.layers.keys() if l not in supported_layers]

        # if len(unsupported_layers) > 0:
        #     print("Please check extention for these unsupported layers =>" + str(unsupported_layers))
        #     exit(1)
        # print("All layers are supported !!")

        if len(unsupported_layers)!=0 and self.device=='CPU':
            print("unsupported layers found:{}".format(unsupported_layers))
            if not self.extensions==None:
                print("Adding cpu_extension")
                self.core.add_extension(self.extensions, self.device)
                supported_layers = self.core.query_network(network = self.network, device_name=self.device)
                unsupported_layers = [l for l in self.network.layers.keys() if l not in supported_layers]
                if len(unsupported_layers)!=0:
                    print("After adding the extension still unsupported layers found")
                    exit(1)
                print("After adding the extension the issue is resolved")
            else:
                print("Give the path of cpu extension")
                exit(1)

    def preprocess_input(self, image):
    '''
    Before feeding the data into the model for inference,
    you might have to preprocess it. This function is where you can do that.
    '''
        model_input_shape = self.network.inputs[self.input].shape

        image_resized = cv2.resize(image, (model_input_shape[3], model_input_shape[2]))
        p_frame = np.transpose(np.expand_dims(image_resized,axis=0), (0,3,1,2))
        return p_frame

    def preprocess_output(self, outputs):
    '''
    Before feeding the output of this model to the next model,
    you might have to preprocess the output. This function is where you can do that.
    '''
        return np.array([outputs['angle_y_fc'][0][0], outputs['angle_p_fc'][0][0], outputs['angle_r_fc'][0][0]])
class Model_FaceDetection:
    '''
    Class for the Face Detection Model.
    '''
    def __init__(self, model_name, device='CPU',extension = None):

        self.net = None
        self.net_plug = None
        self.inp_name = None
        self.out_name = None
        self.inp_shape = None
        self.out_shape = None

        self.model = model_name
        self.device = device
        self.ext = extension
        self.weights = self.model.split('.')[0]+'.bin'
    def load_model(self,plugin=None):
       
        if not plugin:
            self.plugin = IECore()
        else:
            self.plugin = plugin

        self.net = IENetwork(model = self.model, weights = self.weights)

        if not self.ext == None and self.device == 'CPU':
                print("CPU extension added")
                
                self.plugin.add_extension(self.ext, 'CPU')
        
        if self.device == 'CPU':
    
            
                supp_layer = self.plugin.query_network(network = self.net, device_name = self.device)

                no_supp_layer = [lay for lay in self.net.layers.keys() if lay not in supp_layer]
                if len(no_supp_layer) != 0:
                    print("Non supported layers found! Please add another CPU extension ")
                    exit(1)
                
                print("Issue resolved after adding extension")
        else:
            print("CPU extension needed")
            exit(1)

        self.net_plug = self.plugin.load_network(network = self.net, device_name = self.device, num_requests = 1)
        self.inp_name = next(iter(self.net.inputs))
        self.out_name = next(iter(self.net.outputs))
        self.inp_shape = self.net.inputs[self.inp_name].shape

    def predict(self, frame, prob_threshold):
        
        processed_frame = self.preprocess_input(frame.copy())
        out = self.net_plug.infer({self.inp_name : processed_frame})
        out = self.preprocess_output(out, prob_threshold)
        
        if (len(out) == 0):
            return 0, 0
        out = out[0] 
        ht = frame.shape[0]
        wd =frame.shape[1]
        out = out* np.array([wd, ht, wd, ht])
        out = out.astype(np.int32)
        
        cropped = frame[out[1]:out[3], out[0]:out[2]]
        return cropped, out

    def check_model(self):
        pass
        
    def preprocess_input(self, frame):
              
        h = self.inp_shape[2]
        w = self.inp_shape[3]        
        reshaped_frame = cv2.resize(frame, (w, h))
        reshaped_frame = reshaped_frame.transpose((2,0,1))
        reshaped_frame = reshaped_frame.reshape(1, 3, h, w)        
        return reshaped_frame
        
    def preprocess_output(self, out, prob_threshold):
        dim = []
        out = out[self.out_name][0][0]
        for cell in out:
            conf = cell[2]
            
            if conf >= prob_threshold:
                xmin = cell[3]
                xmax = cell[5]
                ymin = cell[4]
                ymax = cell[6]            
                dim.append([xmin, ymin, xmax, ymax])        
        return dim
class GazeEstimationModel:
    '''
    Class for the Gaze Est Model.
    '''
    def __init__(self, model_name, device='CPU', extensions=None):
        self.plugin = None
        self.network = None
        self.exec_network = None
        self.input_name = None
        self.output_name = None
        self.input_shape = None
        self.output_shape = None
        self.infer_req = None
        self.device = device
        self.extensions = extensions
        self.model_path = model_name

    def load_model(self):
        model_xml = self.model_path
        model_bin = os.path.splitext(self.model_path)[0] + ".bin"
        self.plugin = IECore()
        # network model
        self.network = self.plugin.read_network(model=model_xml,
                                                weights=model_bin)

        network_layers = self.network.layers.keys()
        supported_layers = self.plugin.query_network(
            network=self.network, device_name=self.device).keys()
        ext_required = False

        for layer in network_layers:
            if layer in supported_layers:
                pass
            else:
                ext_required = True
                break

        # cpu extension added
        if self.extensions != None and "CPU" in self.device and ext_required:
            self.plugin.add_extension(self.extensions, self.device)

            for layer in network_layers:
                if layer in supported_layers:
                    pass
                else:
                    msg = "Layer extension doesn't support all layers"
                    log.error(msg)
                    raise Exception(msg)

        self.exec_network = self.plugin.load_network(self.network, self.device)

        self.input_name = [i for i in self.network.inputs.keys()]
        self.input_shape = self.network.inputs[self.input_name[1]].shape
        self.output_name = next(iter(self.network.outputs))
        self.output_shape = self.network.outputs[self.output_name].shape

        return

    def predict(self, left_eye, right_eye, head_pose, preview=None):
        input_left_eye, input_right_eye = self.preprocess_input(
            left_eye, right_eye)
        input_dict = {
            'left_eye_image': input_left_eye,
            'right_eye_image': input_right_eye,
            'head_pose_angles': head_pose
        }
        outputs = self.exec_network.infer(input_dict)[self.output_name]
        if preview is not None:
            return self.preprocess_outputs(outputs[0], head_pose[2], preview)
        return self.preprocess_outputs(outputs[0], head_pose[2])

    def preprocess_input(self, left_eye, right_eye):
        preprocessed_left_eye = cv2.resize(
            left_eye, (self.input_shape[3], self.input_shape[2]))
        preprocessed_left_eye = preprocessed_left_eye.transpose((2, 0, 1))

        preprocessed_right_eye = cv2.resize(
            right_eye, (self.input_shape[3], self.input_shape[2]))
        preprocessed_right_eye = preprocessed_right_eye.transpose((2, 0, 1))

        return preprocessed_left_eye.reshape(
            1, *preprocessed_left_eye.shape), preprocessed_right_eye.reshape(
                1, *preprocessed_right_eye.shape)

    def preprocess_outputs(self, outputs, roll, preview=None):
        cos = math.cos(roll * math.pi / 180.0)
        sin = math.sin(roll * math.pi / 180.0)

        x = outputs[0] * cos + outputs[1] * sin
        y = outputs[0] * sin + outputs[1] * cos

        if preview is not None:
            cv2.putText(
                preview, "Gaze Coord: x:{:.2f}|| y:{:.2f} || z:{:.2f}".format(
                    outputs[0], outputs[1], outputs[2]), (10, 40),
                cv2.FONT_HERSHEY_COMPLEX, 0.25, (0, 255, 0), 1)
            return (x, y), outputs, preview
        return (x, y), outputs
class Network:
    '''
    Load and store information for working with the Inference Engine,
    and any loaded models.
    '''
    def __init__(self):
        self.plugin = None
        self.network = None
        self.input_blob = None
        self.output_blob = None
        self.exec_network = None
        self.infer_request = None

    def load_model(self, model, device="CPU", cpu_extension=None):
        '''
        Load the model given IR files.
        Defaults to CPU as device for use in the workspace.
        Synchronous requests made within.
        '''
        model_xml = model
        model_bin = os.path.splitext(model_xml)[0] + ".bin"

        # Initialize the plugin
        self.plugin = IECore()

        # Add a CPU extension, if applicable
        if cpu_extension and "CPU" in device:
            self.plugin.add_extension(cpu_extension, device)

        # Read the IR as a IENetwork
        self.network = IENetwork(model=model_xml, weights=model_bin)

        # Load the IENetwork into the plugin
        self.exec_network = self.plugin.load_network(self.network,
                                                     device,
                                                     num_requests=201)

        # Get the input layer
        self.input_blob = next(iter(self.network.inputs))
        self.output_blob = next(iter(self.network.outputs))

        return

    def get_input_shape(self):
        '''
        Gets the input shape of the network
        '''
        return self.network.inputs[self.input_blob].shape

    def async_inference(self, rqsId, image):
        '''
        Makes an asynchronous inference request, given an input image.
        '''
        ### TODO: Start asynchronous inference
        self.infer_request = self.exec_network.start_async(
            rqsId, {self.input_blob: image})

        return self.infer_request

    def wait(self):
        '''
        Checks the status of the inference request.
        '''
        ### TODO: Wait for the async request to be complete
        status = self.infer_request.wait()

        return status

    def extract_output(self):
        '''
        Returns a list of the results for the output layer of the network.
        '''
        ### TODO: Return the outputs of the network from the output_blob
        return self.infer_request.outputs['output_blob']
def main():
    log.basicConfig(format="[ %(levelname)s ] %(message)s",
                    level=log.INFO,
                    stream=sys.stdout)
    args = build_argparser().parse_args()
    # --------------------------- 1. Read IR Generated by ModelOptimizer (.xml and .bin files) ------------
    model_xml = args.model
    model_bin = os.path.splitext(model_xml)[0] + ".bin"
    log.info("Loading network files:\n\t{}\n\t{}".format(model_xml, model_bin))
    net = IENetwork(model=model_xml, weights=model_bin)
    # -----------------------------------------------------------------------------------------------------

    # ------------- 2. Load Plugin for inference engine and extensions library if specified --------------
    log.info("Loading Inference Engine")
    ie = IECore()
    log.info("Device info:")
    versions = ie.get_versions(args.device)
    print("{}{}".format(" " * 8, args.device))
    print("{}MKLDNNPlugin version ......... {}.{}".format(
        " " * 8, versions[args.device].major, versions[args.device].minor))
    print("{}Build ........... {}".format(" " * 8,
                                          versions[args.device].build_number))

    if args.cpu_extension and "CPU" in args.device:
        ie.add_extension(args.cpu_extension, "CPU")
        log.info("CPU extension loaded: {}".format(args.cpu_extension))

    if "CPU" in args.device:
        supported_layers = ie.query_network(net, "CPU")
        not_supported_layers = [
            l for l in net.layers.keys() if l not in supported_layers
        ]
        if len(not_supported_layers) != 0:
            log.error(
                "Following layers are not supported by the plugin for specified device {}:\n {}"
                .format(args.device, ', '.join(not_supported_layers)))
            log.error(
                "Please try to specify cpu extensions library path in sample's command line parameters using -l "
                "or --cpu_extension command line argument")
            sys.exit(1)
    #-----------------------------------------------------------------------------------------------------

    # --------------------------- 3. Read and preprocess input --------------------------------------------
    input_blob = next(iter(net.inputs))
    n, c, h, w = net.inputs[input_blob].shape
    images = np.ndarray(shape=(n, c, h, w))
    images_hw = []
    for i in range(n):
        image = cv2.imread(args.input[i])
        ih, iw = image.shape[:-1]
        images_hw.append((ih, iw))
        log.info("File was added: ")
        log.info("        {}".format(args.input[i]))
        if (ih, iw) != (h, w):
            image = cv2.resize(image, (w, h))
            log.warning("Image {} is resized from {} to {}".format(
                args.input[i], image.shape[:-1], (h, w)))
        image = image.transpose(
            (2, 0, 1))  # Change data layout from HWC to CHW
        images[i] = image
    # -----------------------------------------------------------------------------------------------------

    # --------------------------- 4. Configure input & output ---------------------------------------------
    # --------------------------- Prepare input blobs -----------------------------------------------------
    log.info("Preparing input blobs")
    assert (len(net.inputs.keys()) == 1 or len(net.inputs.keys())
            == 2), "Sample supports topologies only with 1 or 2 inputs"
    input_blob = next(iter(net.inputs))
    out_blob = next(iter(net.outputs))
    input_name, input_info_name = "", ""

    for input_key in net.inputs:
        if len(net.inputs[input_key].layout) == 4:
            input_name = input_key
            log.info("Batch size is {}".format(net.batch_size))
            net.inputs[input_key].precision = 'U8'
        elif len(net.inputs[input_key].layout) == 2:
            input_info_name = input_key
            net.inputs[input_key].precision = 'FP32'
            if net.inputs[input_key].shape[1] != 3 and net.inputs[input_key].shape[1] != 6 or \
                    net.inputs[input_key].shape[0] != 1:
                log.error(
                    'Invalid input info. Should be 3 or 6 values length.')

    # --------------------------- Prepare output blobs ----------------------------------------------------
    log.info('Preparing output blobs')

    output_name, output_info = "", net.outputs[next(iter(net.outputs.keys()))]
    for output_key in net.outputs:
        if net.layers[output_key].type == "DetectionOutput":
            output_name, output_info = output_key, net.outputs[output_key]

    if output_name == "":
        log.error("Can't find a DetectionOutput layer in the topology")

    output_dims = output_info.shape

    if len(output_dims) != 4:
        log.error("Incorrect output dimensions for SSD model")
    max_proposal_count, object_size = output_dims[2], output_dims[3]

    if object_size != 7:
        log.error("Output item should have 7 as a last dimension")

    output_info.precision = "FP32"
    # -----------------------------------------------------------------------------------------------------

    # --------------------------- Performing inference ----------------------------------------------------
    log.info("Loading model to the device")
    exec_net = ie.load_network(network=net, device_name=args.device)
    log.info("Creating infer request and starting inference")
    res = exec_net.infer(inputs={input_blob: images})
    # -----------------------------------------------------------------------------------------------------

    # --------------------------- Read and postprocess output ---------------------------------------------
    log.info("Processing output blobs")
    res = res[out_blob]
    boxes, classes = {}, {}
    data = res[0][0]

    for number, proposal in enumerate(data):
        if proposal[2] > 0:
            imid = np.int(proposal[0])
            ih, iw = images_hw[imid]
            label = np.int(proposal[1])
            confidence = proposal[2]
            xmin = np.int(iw * proposal[3])
            ymin = np.int(ih * proposal[4])
            xmax = np.int(iw * proposal[5])
            ymax = np.int(ih * proposal[6])
            print("[{},{}] element, prob = {:.6}    ({},{})-({},{}) batch id : {}" \
                  .format(number, label, confidence, xmin, ymin, xmax, ymax, imid), end="")
            if proposal[2] > 0.5:
                print(" WILL BE PRINTED!")
                if not imid in boxes.keys():
                    boxes[imid] = []
                boxes[imid].append([xmin, ymin, xmax, ymax])
                if not imid in classes.keys():
                    classes[imid] = []
                classes[imid].append(label)
            else:
                print()

    for imid in classes:
        tmp_image = cv2.imread(args.input[imid])
        for box in boxes[imid]:
            cv2.rectangle(tmp_image, (box[0], box[1]), (box[2], box[3]),
                          (232, 35, 244), 2)
        cv2.imwrite("out.bmp", tmp_image)
        log.info("Image out.bmp created!")
    # -----------------------------------------------------------------------------------------------------

    log.info("Execution successful\n")
    log.info(
        "This sample is an API example, for any performance measurements please use the dedicated benchmark_app tool"
    )
class GazeEstimationClass:
    
    def __init__(self, model_name, device='CPU', extensions=None):
        
        self.model_weights   = model_name + '.bin'
        self.model_structure = model_name + '.xml'
        self.device = device
        self.extension = extensions
        self.network = None
        self.plugin = None
        self.exec_net = None


    def load_model(self):
        
        self.plugin = IECore()
        self.check_model(self.model_structure, self.model_weights)

        if not all_layers_supported(self.plugin, self.network):
            self.plugin.add_extension(self.extension, self.device)
        
        # Load model
        self.exec_net = self.plugin.load_network(network = self.network, device_name= self.device, num_requests=1)
        self.output_name  = next(iter(self.network.outputs))
        

    def predict(self, left_eye, right_eye, head_pose_out):
        
        p_left_eye, p_right_eye = self.preprocess_input(left_eye, right_eye)
        results = self.exec_net.infer({'head_pose_angles': head_pose_out, 'left_eye_image':p_left_eye, 'right_eye_image': p_right_eye})
        mouse_coordinate, gaze_vector = self.preprocess_output(results, head_pose_out)

        return mouse_coordinate, gaze_vector
        

    def check_model(self, model_structure, model_weights):
        try:
            self.network = IENetwork(model_structure, model_weights)
        except Exception as e:
            raise ValueError("Could not Initialize Network")
    

    def preprocess_input(self, left_eye, right_eye):
        # model requires shape [1x3x60x60]
        p_left_eye = cv2.resize(left_eye, (60, 60))
        p_left_eye = p_left_eye.transpose((2, 0, 1))
        p_left_eye = p_left_eye.reshape(1, *p_left_eye.shape)

        p_right_eye = cv2.resize(right_eye, (60, 60))
        p_right_eye = p_right_eye.transpose((2, 0, 1))
        p_right_eye = p_right_eye.reshape(1, *p_right_eye.shape)

        return p_left_eye, p_right_eye
    
    
    def preprocess_output(self, outputs, head_pose_out):
        
        # Calculate x,y for mouse movement
        gaze_vector = outputs[self.output_name][0]
        angle_r_fc  = head_pose_out[2]
        cosine  = math.cos(angle_r_fc * math.pi / 180)
        sine  = math.sin(angle_r_fc * math.pi / 180)

        x_value = gaze_vector[0] * cosine + gaze_vector[1] * sine
        y_value = - gaze_vector[0] * sine + gaze_vector[1] * cosine

        return (x_value, y_value), gaze_vector
class Network:
    """
    Load and configure inference plugins for the specified target devices 
    and performs synchronous and asynchronous modes for the specified infer requests.
    """
    def __init__(self):
        ### TODO: Initialize any class variables desired ###
        self.plugin = None
        self.net = None
        self.exec_netw = None
        self.input_blob = None
        self.output_blob = None
        self.infer_request = None

    def load_model(self, model, device, cpu_extension):
        ### TODO: Load the model ###
        ### TODO: Check for supported layers ###
        ### TODO: Add any necessary extensions ###
        ### TODO: Return the loaded inference plugin ###
        ### Note: You may need to update the function parameters. ###
        model_xml = model
        model_bin = model.split('.')[0] + '.bin'

        self.plugin = IECore()
        if device == 'CPU':
            self.plugin.add_extension(cpu_extension, device)
        self.net = IENetwork(model=model_xml, weights=model_bin)
        self.exec_netw = self.plugin.load_network(self.net, device)

        sl = self.plugin.query_network(self.net, device_name=device)
        ul = [l for l in self.net.layers.keys() if l not in sl]
        if len(ul) != 0:
            print('Unsupported layers found:{}'.format(ul))
            print(
                'Check for any extensions for these unsupported layers available for adding to IECore'
            )
            exit(1)

        self.input_blob = next(iter(self.net.inputs))
        self.output_blob = next(iter(self.net.outputs))
        return self.exec_netw

    def get_input_shape(self):
        ### TODO: Return the shape of the input layer ###
        return self.net.inputs[self.input_blob].shape

    def exec_net(self, image):
        ### TODO: Start an asynchronous request ###
        ### TODO: Return any necessary information ###
        ### Note: You may need to update the function parameters. ###
        self.exec_netw.start_async(request_id=0,
                                   inputs={self.input_blob: image})
        return

    def wait(self):
        ### TODO: Wait for the request to be complete. ###
        ### TODO: Return any necessary information ###
        ### Note: You may need to update the function parameters. ###
        return self.exec_netw.requests[0].wait(-1)

    def get_output(self):
        ### TODO: Extract and return the output results
        ### Note: You may need to update the function parameters. ###
        output = self.exec_netw.requests[0].outputs[self.output_blob]
        return output
示例#13
0
def main():
    log.basicConfig(format="[ %(levelname)s ] %(message)s",
                    level=log.INFO,
                    stream=sys.stdout)
    args = build_argparser().parse_args()
    model_xml = args.model
    model_bin = os.path.splitext(model_xml)[0] + ".bin"

    # Plugin initialization for specified device and load extensions library if specified
    log.info("Creating Inference Engine")
    ie = IECore()
    if args.cpu_extension and 'CPU' in args.device:
        ie.add_extension(args.cpu_extension, "CPU")
    # Read IR
    log.info("Loading network files:\n\t{}\n\t{}".format(model_xml, model_bin))
    net = ie.read_network(model=model_xml, weights=model_bin)

    if "CPU" in args.device:
        supported_layers = ie.query_network(net, "CPU")
        not_supported_layers = [
            l for l in net.layers.keys() if l not in supported_layers
        ]
        if len(not_supported_layers) != 0:
            log.error(
                "Following layers are not supported by the plugin for specified device {}:\n {}"
                .format(args.device, ', '.join(not_supported_layers)))
            log.error(
                "Please try to specify cpu extensions library path in sample's command line parameters using -l "
                "or --cpu_extension command line argument")
            sys.exit(1)
    assert len(
        net.inputs.keys()) == 1, "Sample supports only single input topologies"
    assert len(
        net.outputs) == 1, "Sample supports only single output topologies"

    log.info("Preparing input blobs")
    input_blob = next(iter(net.inputs))
    out_blob = next(iter(net.outputs))
    net.batch_size = len(args.input)

    # Read and pre-process input images
    n, c, h, w = net.inputs[input_blob].shape
    images = np.ndarray(shape=(n, c, h, w))
    for i in range(n):
        image = cv2.imread(args.input[i])
        if image.shape[:-1] != (h, w):
            log.warning("Image {} is resized from {} to {}".format(
                args.input[i], image.shape[:-1], (h, w)))
            image = cv2.resize(image, (w, h))
        image = image.transpose(
            (2, 0, 1))  # Change data layout from HWC to CHW
        images[i] = image
    log.info("Batch size is {}".format(n))

    # Loading model to the plugin
    log.info("Loading model to the plugin")
    exec_net = ie.load_network(network=net, device_name=args.device)

    # create one inference request for asynchronous execution
    request_id = 0
    infer_request = exec_net.requests[request_id]

    num_iter = 10
    request_wrap = InferReqWrap(infer_request, request_id, num_iter)
    # Start inference request execution. Wait for last execution being completed
    request_wrap.execute("async", {input_blob: images})

    # Processing output blob
    log.info("Processing output blob")
    res = infer_request.outputs[out_blob]
    log.info("Top {} results: ".format(args.number_top))
    if args.labels:
        with open(args.labels, 'r') as f:
            labels_map = [x.split(sep=' ', maxsplit=1)[-1].strip() for x in f]
    else:
        labels_map = None
    classid_str = "classid"
    probability_str = "probability"
    for i, probs in enumerate(res):
        probs = np.squeeze(probs)
        top_ind = np.argsort(probs)[-args.number_top:][::-1]
        print("Image {}\n".format(args.input[i]))
        print(classid_str, probability_str)
        print("{} {}".format('-' * len(classid_str),
                             '-' * len(probability_str)))
        for id in top_ind:
            det_label = labels_map[id] if labels_map else "{}".format(id)
            label_length = len(det_label)
            space_num_before = (7 - label_length) // 2
            space_num_after = 7 - (space_num_before + label_length) + 2
            space_num_before_prob = (11 - len(str(probs[id]))) // 2
            print("{}{}{}{}{:.7f}".format(' ' * space_num_before, det_label,
                                          ' ' * space_num_after,
                                          ' ' * space_num_before_prob,
                                          probs[id]))
        print("\n")
    log.info(
        "This sample is an API example, for any performance measurements please use the dedicated benchmark_app tool\n"
    )
class FacialLandmarksDetectionModel:
    '''
    Class for the Face Detection Model.
    '''
    def __init__(self, model_name, device='CPU', extensions=None):
        '''
        TODO: Use this to set your instance variables.
        '''
        self.model_name = model_name
        self.device = device
        self.extensions = extensions
        self.model_structure = self.model_name
        self.model_weights = self.model_name.split(".")[0] + '.bin'
        self.plugin = None
        self.network = None
        self.exec_net = None
        self.input_name = None
        self.input_shape = None
        self.output_names = None
        self.output_shape = None

    def load_model(self):
        '''
        TODO: You will need to complete this method.
        This method is for loading the model to the device specified by the user.
        If your model requires any Plugins, this is where you can load them.
        '''
        self.plugin = IECore()

        self.network = self.plugin.read_network(model=self.model_structure,
                                                weights=self.model_weights)

        supported_layers = self.plugin.query_network(network=self.network,
                                                     device_name=self.device)

        unsupported_layers = [
            i for i in self.network.layers.keys() if i not in supported_layers
        ]

        if len(unsupported_layers) != 0 and self.device == 'CPU':
            print("unsupported layers found:{}".format(unsupported_layers))
            if not self.extensions == None:
                print("Adding cpu_extension")

                self.plugin.add_extension(self.extensions, self.device)

                supported_layers = self.plugin.query_network(
                    network=self.network, device_name=self.device)
                unsupported_layers = [
                    i for i in self.network.layers.keys()
                    if i not in supported_layers
                ]

                if len(unsupported_layers) != 0:
                    print(
                        "After adding the extension still unsupported layers found"
                    )
                    exit(1)
                print("After adding the extension the issue is resolved")
            else:
                print("Give the path of cpu extension")
                exit(1)

        self.exec_net = self.plugin.load_network(network=self.network,
                                                 device_name=self.device,
                                                 num_requests=1)

        self.input_name = next(iter(self.network.inputs))
        self.input_shape = self.network.inputs[self.input_name].shape

        self.output_names = next(iter(self.network.outputs))
        self.output_shape = self.network.outputs[self.output_names].shape

    def predict(self, image):
        '''
        TODO: You will need to complete this method.
        This method is meant for running predictions on the input image.
        '''
        processed_img = self.preprocess_input(image.copy())
        outputs = self.exec_net.infer({self.input_name: processed_img})
        coordinates = self.preprocess_output(outputs)
        h = image.shape[0]
        w = image.shape[1]
        coordinates = coordinates * np.array([w, h, w, h])
        coordinates = coordinates.astype(
            np.int32)  #(lefteye_x, lefteye_y, righteye_x, righteye_y)

        le_xmin = coordinates[0] - 10
        le_ymin = coordinates[1] - 10
        le_xmax = coordinates[0] + 10
        le_ymax = coordinates[1] + 10

        re_xmin = coordinates[2] - 10
        re_ymin = coordinates[3] - 10
        re_xmax = coordinates[2] + 10
        re_ymax = coordinates[3] + 10

        left_eye = image[le_ymin:le_ymax, le_xmin:le_xmax]
        right_eye = image[re_ymin:re_ymax, re_xmin:re_xmax]
        eye_coordinates = [[le_xmin, le_ymin, le_xmax, le_ymax],
                           [re_xmin, re_ymin, re_xmax, re_ymax]]

        return left_eye, right_eye, eye_coordinates

    def preprocess_input(self, image):
        '''
        Before feeding the data into the model for inference,
        you might have to preprocess it. This function is where you can do that.
        '''
        image_cvt = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        image_resized = cv2.resize(image_cvt,
                                   (self.input_shape[3], self.input_shape[2]))
        img_processed = np.transpose(np.expand_dims(image_resized, axis=0),
                                     (0, 3, 1, 2))
        return img_processed

    def preprocess_output(self, outputs):
        '''
        Before feeding the output of this model to the next model,
        you might have to preprocess the output. This function is where you can do that.
        '''

        outs = outputs[self.output_names][0]
        ley_x = outs[0].tolist()[0][0]
        ley_y = outs[1].tolist()[0][0]
        rey_x = outs[2].tolist()[0][0]
        rey_y = outs[3].tolist()[0][0]

        return (ley_x, ley_y, rey_x, rey_y)
data_fn = os.path.join(args.data_path, args.data_filename)
model_fn = os.path.join(args.output_path, args.inference_filename)



log.basicConfig(format="[ %(levelname)s ] %(message)s", level=log.INFO, stream=sys.stdout)

# Plugin initialization for specified device and load extensions library if specified
print("check")
#plugin = IEPlugin(device=args.device, plugin_dirs=args.plugin_dir)
ie=IECore()
print(args.device)
if args.cpu_extension and "CPU" in args.device:
    #plugin.add_cpu_extension(args.cpu_extension)
    ie.add_extension(args.cpu_extension, "CPU")

# Read IR
# If using MYRIAD then we need to load FP16 model version
model_xml, model_bin = load_model()
log.info("Loading network files:\n\t{}\n\t{}".format(model_xml, model_bin))
net = IENetwork(model=model_xml, weights=model_bin)
if args.device == "CPU":
        supported_layers = ie.query_network(net, args.device)
        not_supported_layers = [l for l in net.layers.keys() if l not in supported_layers]
        if len(not_supported_layers) != 0:
            log.error("Following layers are not supported by the plugin for specified device {}:\n {}".
                      format(args.device, ', '.join(not_supported_layers)))
            log.error("Please try to specify cpu extensions library path in sample's command line parameters using -l "
                      "or --cpu_extension command line argument")
            sys.exit(1)
示例#16
0
class Network:
    """
    Load and configure inference plugins for the specified target devices 
    and performs synchronous and asynchronous modes for the specified infer requests.
    """
    def __init__(self):
        self.plugin = None
        self.network = None
        self.input_blob = None
        self.output_blob = None
        self.net_plugin = None
        self.infer_request_handle = None
        ### TODO: Initialize any class variables desired ###

    def load_model(self, model, device="CPU", cpu_extension=None):
        ### TODO: Load the model ###
        model_xml = model
        model_bin = os.path.splitext(model_xml)[0] + ".bin"
        self.plugin = IECore()
        if cpu_extension and "CPU" in device:
            self.plugin.add_extension(cpu_extension, device)
        # Read the IR as a IENetwork
        self.network = IENetwork(model=model_xml, weights=model_bin)
        ### TODO: Check for supported layers ###
        supported_layers = self.plugin.query_network(network=self.network,
                                                     device_name="CPU")
        unsupported_layers = [
            l for l in self.network.layers.keys() if l not in supported_layers
        ]
        if len(unsupported_layers) != 0:
            print("Unsupported layers found: {}".format(unsupported_layers))
            print("Check whether extensions are available to add to IECore.")
            exit(1)
        ### TODO: Return the loaded inference plugin ###
        self.net_plugin = self.plugin.load_network(self.network, device)
        ### Note: You may need to update the function parameters. ###
        self.input_blob = next(iter(self.network.inputs))
        self.output_blob = next(iter(self.network.outputs))
        return

    def get_input_shape(self):
        ### TODO: Return the shape of the input layer ###
        return self.network.inputs[self.input_blob].shape

    def exec_net(self, image):
        ### TODO: Start an asynchronous request ###
        self.infer_request_handle = self.net_plugin.start_async(
            request_id=0, inputs={self.input_blob: image})
        ### TODO: Return any necessary information ###
        return
        ### Note: You may need to update the function parameters. ###

    def wait(self):
        ### TODO: Wait for the request to be complete. ###
        status = self.net_plugin.requests[0].wait(-1)
        ### TODO: Return any necessary information ###
        ### Note: You may need to update the function parameters. ###
        return status

    def get_output(self):
        ### TODO: Extract and return the output results
        ### Note: You may need to update the function parameters. ###
        return self.net_plugin.requests[0].outputs[self.output_blob]
示例#17
0
class Network:
    """
    Load and configure inference plugins for the specified target devices 
    and performs synchronous and asynchronous modes for the specified infer requests.
    """

    def __init__(self):
        ### TODO: Initialize any class variables desired ###
        self.plugin = None
        self.network = None
        self.input_blob = None
        self.output_blob = None
        self.exec_network = None
        self.infer_request = None
        return

    def load_model(self, model_xml, device="CPU", cpu_extension=None):
        ### TODO: Load the model ###
        model_bin = os.path.splitext(model_xml)[0] + ".bin"
        # Initialize the plugin
        self.plugin = IECore()
        
        ### TODO: Add any necessary extensions ###
        if cpu_extension and "CPU" in device:
            self.plugin.add_extension(cpu_extension, device)

        # Read the IR as a IENetwork
  
        self.network = self.plugin.read_network(model=model_xml, weights=model_bin)
        
        # ### TODO: Check for supported layers ###
        # supported_layers = self.plugin.query_network(network=self.network, device_name=device)
        # # Check for any unsupported layers, and let the user
        # # know if anything is missing. Exit the program, if so.
        # unsupported_layers = [l for l in self.network.layers.keys() if l not in supported_layers]
        # if len(unsupported_layers) != 0:
        #     print("Unsupported layers found: {}".format(unsupported_layers))
        #     print("Check whether extensions are available to add to IECore.")
        #     exit(1)

        # Load the IENetwork into the plugin
        self.exec_network = self.plugin.load_network(self.network, device)
        
        # Get the input layer
        self.input_blob = next(iter(self.network.inputs))
        self.output_blob = next(iter(self.network.outputs))
        return

    def get_input_shape(self):
        ### TODO: Return the shape of the input layer ###
        return self.network.inputs[self.input_blob].shape

    def exec_net(self, input1,input2=None,input3=None):
        ### TODO: Start an asynchronous request ###
        inputiter = iter(self.network.inputs)

        if(input2 is None and input3 is None):
            self.exec_network.start_async(request_id=0, 
                inputs={self.input_blob: input1})
        elif(input3 is None):    
            next(inputiter)#ignore first input
            self.exec_network.start_async(request_id=0, 
                inputs={self.input_blob: input1, next(inputiter):input2})
        else:
            next(inputiter)#ignore first input
            self.exec_network.start_async(request_id=0, 
                inputs={self.input_blob: input1, next(inputiter):input2, next(inputiter):input3})
        ### TODO: Return any necessary information ###
        ### Note: You may need to update the function parameters. ###
        return

    def wait(self):
        ### TODO: Wait for the request to be complete. ###
        status = self.exec_network.requests[0].wait(-1)
        ### TODO: Return any necessary information ###
        ### Note: You may need to update the function parameters. ###
        return status

    def get_output(self):
        ### TODO: Extract and return the output results
        ### Note: You may need to update the function parameters. ###
        return self.exec_network.requests[0].outputs
示例#18
0
def main():
    log.basicConfig(format="[ %(levelname)s ] %(message)s",
                    level=log.INFO,
                    stream=sys.stdout)
    args = build_argparser().parse_args()

    # Plugin initialization for specified device and load extensions library if specified
    log.info("Creating Inference Engine")
    ie = IECore()
    if args.cpu_extension and 'CPU' in args.device:
        ie.add_extension(args.cpu_extension, "CPU")

    # Read a model in OpenVINO Intermediate Representation (.xml and .bin files) or ONNX (.onnx file) format
    model = args.model
    log.info(f"Loading network:\n\t{model}")
    net = ie.read_network(model=model)

    assert len(net.input_info.keys()
               ) == 1, "Sample supports only single input topologies"
    assert len(
        net.outputs) == 1, "Sample supports only single output topologies"

    log.info("Preparing input blobs")
    input_blob = next(iter(net.input_info))
    out_blob = next(iter(net.outputs))
    net.batch_size = len(args.input)

    # Read and pre-process input images
    n, c, h, w = net.input_info[input_blob].input_data.shape
    images = np.ndarray(shape=(n, c, h, w))
    for i in range(n):
        image = cv2.imread(args.input[i])
        if image.shape[:-1] != (h, w):
            log.warning("Image {} is resized from {} to {}".format(
                args.input[i], image.shape[:-1], (h, w)))
            image = cv2.resize(image, (w, h))
        image = image.transpose(
            (2, 0, 1))  # Change data layout from HWC to CHW
        images[i] = image
    log.info("Batch size is {}".format(n))

    # Loading model to the plugin
    log.info("Loading model to the plugin")
    exec_net = ie.load_network(network=net, device_name=args.device)

    # Start sync inference
    log.info("Starting inference")
    res = exec_net.infer(inputs={input_blob: images})

    # Processing output blob
    log.info("Processing output blob")
    res = res[out_blob]
    # Post process output
    for batch, data in enumerate(res):
        # Clip values to [0, 255] range
        data = np.swapaxes(data, 0, 2)
        data = np.swapaxes(data, 0, 1)
        data = cv2.cvtColor(data, cv2.COLOR_BGR2RGB)
        data[data < 0] = 0
        data[data > 255] = 255
        data = data[::] - (args.mean_val_r, args.mean_val_g, args.mean_val_b)
        out_img = os.path.join(os.path.dirname(__file__),
                               "out_{}.bmp".format(batch))
        cv2.imwrite(out_img, data)
        log.info("Result image was saved to {}".format(out_img))
    log.info(
        "This sample is an API example, for any performance measurements please use the dedicated benchmark_app tool\n"
    )
class FacialLandmardDetectionModel:
    '''
    Class for the Face LandMark detection Model.
    '''
    def __init__(self, model_name, device='CPU', extensions=None):
        self.plugin = None
        self.network = None
        self.exec_network = None
        self.input_name = None
        self.output_name = None
        self.input_shape = None
        self.output_shape = None
        self.infer_req = None
        self.device = device
        self.extensions = extensions
        self.model_path = model_name

    def load_model(self):
        model_xml = self.model_path
        model_bin = os.path.splitext(self.model_path)[0] + ".bin"
        self.plugin = IECore()
        # network model
        self.network = self.plugin.read_network(model=model_xml,
                                                weights=model_bin)

        network_layers = self.network.layers.keys()
        supported_layers = self.plugin.query_network(
            network=self.network, device_name=self.device).keys()
        ext_required = False

        for layer in network_layers:
            if layer in supported_layers:
                pass
            else:
                ext_required = True
                break

        # cpu extension added
        if self.extensions != None and "CPU" in self.device and ext_required:
            self.plugin.add_extension(self.extensions, self.device)

            for layer in network_layers:
                if layer in supported_layers:
                    pass
                else:
                    msg = "Layer extension doesn't support all layers"
                    log.error(msg)
                    raise Exception(msg)

        self.exec_network = self.plugin.load_network(self.network, self.device)

        self.input_name = next(iter(self.network.inputs))
        self.input_shape = self.network.inputs[self.input_name].shape
        self.output_name = next(iter(self.network.outputs))
        self.output_shape = self.network.outputs[self.output_name].shape

        return

    def predict(self, image, preview=False):
        input_img = self.preprocess_input(image)
        input_dict = {self.input_name: input_img}
        outputs = self.exec_network.infer(input_dict)[self.output_name]
        coords = self.preprocess_outputs(outputs,
                                         (image.shape[1], image.shape[0]))
        return self.draw_outputs(coords, image, preview)

    def draw_outputs(self, coords, image, preview):
        left_eye_min = (coords[0] - 15, coords[1] - 15)
        left_eye_max = (coords[0] + 15, coords[1] + 15)
        right_eye_min = (coords[2] - 15, coords[3] - 15)
        right_eye_max = (coords[2] + 15, coords[3] + 15)
        left_eye = image[left_eye_min[1]:left_eye_max[1],
                         left_eye_min[0]:left_eye_max[0]]
        right_eye = image[right_eye_min[1]:right_eye_max[1],
                          right_eye_min[0]:right_eye_max[0]]

        if preview:
            cv2.rectangle(image, left_eye_min, left_eye_max, (200, 10, 10), 2)
            cv2.rectangle(image, right_eye_min, right_eye_max, (200, 10, 10),
                          2)

        eye_coords = [[
            left_eye_min[0], left_eye_min[1], left_eye_max[1], left_eye_max[1]
        ],
                      [
                          right_eye_min[0], right_eye_min[1], right_eye_max[0],
                          right_eye_max[1]
                      ]]
        return eye_coords, left_eye, right_eye, image

    def preprocess_input(self, image):
        preprocessed_frame = cv2.resize(
            image, (self.input_shape[3], self.input_shape[2]))
        preprocessed_frame = preprocessed_frame.transpose((2, 0, 1))
        return preprocessed_frame.reshape(1, *preprocessed_frame.shape)

    def preprocess_outputs(self, outputs, dim):
        left_eye_x = int(outputs[0][0] * dim[0])
        left_eye_y = int(outputs[0][1] * dim[1])
        right_eye_x = int(outputs[0][2] * dim[0])
        right_eye_y = int(outputs[0][3] * dim[1])

        return (left_eye_x, left_eye_y, right_eye_x, right_eye_y)
class Model_Head_Pose_Estimation:
    '''
    Class for the Face Detection Model.
    '''

    def __init__(self, model_name, device='CPU', extensions=None, threshold=0.5):
        '''
        Setting Instance variables.
        '''
        self.model_name = model_name
        self.device = device
        self.extension = extensions
        self.threshold = threshold
        self.plugin = None
        self.network = None
        self.input_blob = None
        self.output_blob = None
        self.exec_network = None
        self.input_shape = None

    def load_model(self):
        '''
        This method is for loading the model to the device specified by the user.
        If your model requires any Plugins, this is where you can load them.
        '''
        model_structure = self.model_name + ".xml"
        model_weight = self.model_name + ".bin"
        self.network = IENetwork(model=model_structure, weights=model_weight)
        self.plugin = IECore()
        if self.extension is not None and "CPU" in self.device:
            self.plugin.add_extension(self.extension, self.device)

        self.exec_network = self.plugin.load_network(self.network, self.device)
        self.check_model()
        self.input_blob = next(iter(self.network.inputs))
        self.output_blob = next(iter(self.network.outputs))
        self.input_shape = self.network.inputs[self.input_blob].shape

    def predict(self, image):
        '''
        This method is meant for running predictions on the input image.
        '''
        pre_pro_img = self.preprocess_input(image)
        inference_result=self.exec_network.infer(inputs={self.input_blob: pre_pro_img})
        # if self.wait() == 0:
        # inference_result = self.get_output_result()
        type(inference_result)
        head_pose = self.preprocess_output(inference_result)
        return head_pose

    def check_model(self):
        if "CPU" in self.device:
            supported_layers = self.plugin.query_network(self.network, "CPU")
            none_supported_layers = [l for l in self.network.layers.keys() if l not in supported_layers]
        if len(none_supported_layers) > 0:
            log.error("Following layers are not supported by the plugin for the specified device {}:\n {}".
                      format(self.device, ', '.join(none_supported_layers)))
            log.error(
                "Please try to specify cpu extensions library path in sample's command line parameters using -l "
                "or --cpu_extension command line argument")
            sys.exit(1)

    def preprocess_input(self, image):
        '''
        Before feeding the data into the model for inference,
        you might have to preprocess it. This function is where you can do that.
        '''
        n, c, h, w = self.input_shape
        pre_pro_frame = cv2.resize(image, (w, h))
        pre_pro_frame = pre_pro_frame.transpose((2, 0, 1))
        pre_pro_frame = pre_pro_frame.reshape(n, c, h, w)
        return pre_pro_frame

    def preprocess_output(self, outputs):
        '''
        Before feeding the output of this model to the next model,
        you might have to preprocess the output. This function is where you can do that.
        '''
        return [outputs["angle_y_fc"].tolist()[0][0], outputs["angle_p_fc"].tolist()[0][0], outputs["angle_r_fc"].tolist()[0][0]]

    def wait(self):
        inf_status = self.exec_network.requests[0].wait(-1)
        return inf_status

    def get_output_result(self):
        return self.exec_network.requests[0].outputs[self.output_blob]
示例#21
0
class Network:
    """
    Load and configure inference plugins for the specified target devices 
    and performs synchronous and asynchronous modes for the specified infer requests.
    """
    def __init__(self):
        self.plugin = None
        self.network = None
        self.input_blob = None
        self.output_blob = None
        self.exec_network = None
        self.infer_request = None

    def load_model(self, model, device="CPU", CPU_EXTENSION=None):
        """
        To load the specified model and check for supported layers.
        
        :param model: path where model available in IR format
        :param device: device to be used to load the model
        :param CPU_EXTENSION: CPU extension to used
        :return: None
        """
        # Initialize the plugin
        self.plugin = IECore()
        model_xml = model
        model_bin = os.path.splitext(model_xml)[0] + ".bin"

        # Read the IR as a IENetwork
        self.network = IENetwork(model=model_xml, weights=model_bin)
        # Check for supported layers
        supported_layers = self.plugin.query_network(network=self.network,
                                                     device_name=device)
        unsupported_layers = [
            l for l in self.network.layers.keys() if l not in supported_layers
        ]

        if len(unsupported_layers) != 0:
            # Add necessary extensions
            self.plugin.add_extension(CPU_EXTENSION, device)

        # Load the network into the Inference Engine
        self.exec_network = self.plugin.load_network(self.network, device)

        # Get the input layer
        self.input_blob = next(iter(self.network.inputs))
        self.output_blob = next(iter(self.network.outputs))

        # sucessfully loaded inference plugin
        return

    def get_input_shape(self):
        """
        Provides the shape of input to the network.
        
        :return: Return the shape of the input layer
        """
        # return self.network.inputs[self.input_blob].shape
        input_shapes = {}
        for input in self.network.inputs:
            input_shapes[input] = (self.network.inputs[input].shape)
        return input_shapes

    def exec_net(self, request_id, net_input):
        """
        Perform the inference request.
        
        :param requestId: inference requested ID
        :param net_input: input to the model for inference
        :return: None        
        """
        #self.infer_request = self.exec_network.start_async(request_id=request_id,inputs={self.input_blob: net_input})
        # Start an asynchronous request
        self.infer_request = self.exec_network.start_async(request_id,
                                                           inputs=net_input)
        return

    def wait(self, request_id):
        """
        Wait for the request to be complete.
        
        :param requestId: inference requested ID
        :return: status of the inference request
        """
        status = self.exec_network.requests[request_id].wait(-1)
        return status

    def get_output(self):
        """
        To extract and return the output results.
        
        :return: inference output results
        """
        # Extract and return the output results
        return self.infer_request.outputs[self.output_blob]
示例#22
0
class Network:
    """
    Load and configure inference plugins for the specified target devices 
    and performs asynchronous modes for the specified infer requests.
    """
    def __init__(self):
        ### TODO: Initialize any class variables desired ###
        self.core = None
        self.network = None
        self.input_blob = None
        self.output_blob = None
        self.exec_network = None

    def get_unsupported_layers(self, device):
        #get a list of the supported layers
        supported_layers = self.core.query_network(self.network,
                                                   device_name=device)
        #get the required layers
        required_layers = list(self.network.layers.keys())
        #check if there are unsupported layers
        unsupported_layers = []
        for layer in required_layers:
            if layer not in supported_layers:
                unsupported_layers.append(layer)

        return unsupported_layers

    def load_model(self, device, model_xml, cpu_extension):
        ### TODO: Load the model ###
        ### TODO: Check for supported layers ###
        ### TODO: Add any necessary extensions ###
        ### TODO: Return the loaded inference plugin ###
        ### Note: You may need to update the function parameters. ###
        #check if we have provided a valid file for the xml
        if (model_xml.endswith('.xml')) and (os.path.exists(model_xml)):
            model_bin = model_xml.replace('.xml', '.bin')  #get the model bin
            if DEBUG:
                print("model found")
                print("model_xml: ", model_xml)
                print("model_bin: ", model_bin)
                print("device: ", device)
        else:
            print(
                "There was a problem reading the xml file provided, exiting..."
            )
            exit(1)

        #initialize the Inference Engine (NOTE using the 2019R3 version of OPENVino, as stated in the exercise)
        self.core = IECore()

        #initialize the Network (NOTE in the 2020R1 version of OPENVino, can be used from the IECore)
        self.network = IENetwork(model=model_xml, weights=model_bin)

        #check if there are any unsupported layers
        unsupported_layers = self.get_unsupported_layers(device)

        #if there are any unsupported layers, add CPU extension, if avaiable
        if (len(unsupported_layers) > 0) and (device == 'CPU'):
            print(
                "There are unsupported layers found, will try to add CPU extension..."
            )
            self.core.add_extension(extension_path=cpu_extension,
                                    device=device)

        #add, if provided, a cpu extension
        if (cpu_extension):
            self.core.add_extension(cpu_extension)

        #recheck for unsupported layers, and exit if there are any
        unsupported_layers = self.get_unsupported_layers(device)
        if (len(unsupported_layers) > 0):
            print(
                "After adding CPU extension, there are still unsupported layers, exiting..."
            )
            exit(1)

        #load to network to get the executable network
        self.exec_network = self.core.load_network(self.network, device)

        #get the input and output blobs
        self.input_blob = next(iter(self.network.inputs))
        self.output_blob = next(iter(self.network.outputs))

        return self.exec_network

    def get_input_shape(self):
        ### TODO: Return the shape of the input layer ###
        return self.network.inputs[self.input_blob].shape

    def exec_net(self, image, request_id=0):
        ### TODO: Start an asynchronous request ###
        ### TODO: Return any necessary information ###
        ### Note: You may need to update the function parameters. ###
        #requiest_id is set to zero, if not specified, for pseudo async mode
        self.exec_network.start_async(request_id=request_id,
                                      inputs={self.input_blob: image})
        return

    def wait(self, request_id=0):
        ### TODO: Wait for the request to be complete. ###
        ### TODO: Return any necessary information ###
        ### Note: You may need to update the function parameters. ###
        infer_status = self.exec_network.requests[request_id].wait(-1)
        return infer_status

    def get_output(self, request_id=0):
        ### TODO: Extract and return the output results
        ### Note: You may need to update the function parameters. ###
        result = self.exec_network.requests[request_id].outputs[
            self.output_blob]
        #print('---------------------------------------- latency:', self.exec_network.requests[request_id].latency)
        return result
示例#23
0
def main():
    log.basicConfig(format="[ %(levelname)s ] %(message)s",
                    level=log.INFO,
                    stream=sys.stdout)
    args = build_argparser().parse_args()
    model_xml = args.model
    model_bin = os.path.splitext(model_xml)[0] + ".bin"

    # Plugin initialization for specified device and load extensions library if specified
    log.info("Creating Inference Engine")
    ie = IECore()
    if args.cpu_extension and 'CPU' in args.device:
        ie.add_extension(args.cpu_extension, "CPU")
    # Read IR
    log.info("Loading network files:\n\t{}\n\t{}".format(model_xml, model_bin))
    net = ie.read_network(model=model_xml, weights=model_bin)

    if "CPU" in args.device:
        supported_layers = ie.query_network(net, "CPU")
        not_supported_layers = [
            l for l in net.layers.keys() if l not in supported_layers
        ]
        if len(not_supported_layers) != 0:
            log.error(
                "Following layers are not supported by the plugin for specified device {}:\n {}"
                .format(args.device, ', '.join(not_supported_layers)))
            log.error(
                "Please try to specify cpu extensions library path in sample's command line parameters using -l "
                "or --cpu_extension command line argument")
            sys.exit(1)

    assert len(net.input_info.keys()
               ) == 1, "Sample supports only single input topologies"
    assert len(
        net.outputs) == 1, "Sample supports only single output topologies"

    log.info("Preparing input blobs")
    input_blob = next(iter(net.input_info))
    out_blob = next(iter(net.outputs))
    net.batch_size = len(args.input)

    # Read and pre-process input images
    n, c, h, w = net.input_info[input_blob].input_data.shape
    images = np.ndarray(shape=(n, c, h, w))
    for i in range(n):
        image = cv2.imread(args.input[i])
        if image.shape[:-1] != (h, w):
            log.warning("Image {} is resized from {} to {}".format(
                args.input[i], image.shape[:-1], (h, w)))
            image = cv2.resize(image, (w, h))
        image = image.transpose(
            (2, 0, 1))  # Change data layout from HWC to CHW
        images[i] = image
    log.info("Batch size is {}".format(n))

    # Loading model to the plugin
    log.info("Loading model to the plugin")
    exec_net = ie.load_network(network=net, device_name=args.device)

    # Start sync inference
    log.info("Starting inference")
    res = exec_net.infer(inputs={input_blob: images})

    # Processing output blob
    log.info("Processing output blob")
    res = res[out_blob]
    # Post process output
    for batch, data in enumerate(res):
        # Clip values to [0, 255] range
        data = np.swapaxes(data, 0, 2)
        data = np.swapaxes(data, 0, 1)
        data = cv2.cvtColor(data, cv2.COLOR_BGR2RGB)
        data[data < 0] = 0
        data[data > 255] = 255
        data = data[::] - (args.mean_val_r, args.mean_val_g, args.mean_val_b)
        out_img = os.path.join(os.path.dirname(__file__),
                               "out_{}.bmp".format(batch))
        cv2.imwrite(out_img, data)
        log.info("Result image was saved to {}".format(out_img))
    log.info(
        "This sample is an API example, for any performance measurements please use the dedicated benchmark_app tool\n"
    )
示例#24
0
class Network:
    """
    Load and configure inference plugins for the specified target devices 
    and performs synchronous and asynchronous modes for the specified infer requests.
    """
    def __init__(self):
        self._core = None
        self._network = None
        self._exec_network = None
        self._input_blob = None
        self._output_blob = None
        self._img_info_input_blob = None
        self._feed_dict = {}

    def load_model(self, model, device, cpu_extension=None):
        ### Load the model ###
        model_xml = model
        model_bin = os.path.splitext(model_xml)[0] + ".bin"

        self._core = IECore()

        ### Add any necessary extensions ###
        if cpu_extension and "CPU" in device:
            self._core.add_extension(cpu_extension, device)

        self._network = IENetwork(model=model_xml, weights=model_bin)

        ### Check for supported layers ###
        unsupported = self.check_unsupported_layers(self._network, device)
        if len(unsupported) != 0:
            print("There are unsupported layers in the current model.\n"
                  "Try to load a CPU extension to solve this problem.\n"
                  "Layer types: " + str(unsupported) + "\n"
                  "Cannot continue. Exiting.",
                  file=sys.stderr)
            exit(1)

        try:
            self._exec_network = self._core.load_network(self._network, device)
        except Exception as e:
            if "unsupported layer" in str(e):
                # OpenVINO throws a RuntimeException on unsupported layer,
                # not an specific type of exception
                print("Cannot run the model, unsupported layer: ",
                      e,
                      file=sys.stderr)
                print(
                    "You can try to pass a CPU Extension with the argument --cpu_extension",
                    file=sys.stderr)
            else:
                print(e, file=sys.stderr)
            exit(1)

        #self._input_blob = next(iter(self._network.inputs)) #does not work with Faster RCNN (2 inputs)
        self._handle_inputs()

        assert len(self._network.outputs
                   ) == 1, "Demo supports only single output topologies"
        self._output_blob = next(iter(self._network.outputs))
        ### Note: You may need to update the function parameters. ###
        return self._exec_network  ########hay que ver si no es un "leak" de implementación

    def _handle_inputs(self):
        #code copied from object_detection_demo_ssd_async.py.
        # Before this, Faster RCNN did not work because it have 2 inputs
        for blob_name in self._network.inputs:
            if len(self._network.inputs[blob_name].shape) == 4:
                self._input_blob = blob_name
            elif len(self._network.inputs[blob_name].shape) == 2:
                self._img_info_input_blob = blob_name
            else:
                raise RuntimeError(
                    "Unsupported {}D input layer '{}'. Only 2D and 4D input layers are supported"
                    .format(len(self._network.inputs[blob_name].shape),
                            blob_name))

        #
        n, c, h, w = self._network.inputs[self._input_blob].shape
        if self._img_info_input_blob:
            self._feed_dict[self._img_info_input_blob] = [h, w, 1]

    def get_input_shape(self):
        return self._network.inputs[self._input_blob].shape

    def exec_net(self,
                 image,
                 request_id=0):  #### #Renombrar a async_inference?
        ### TODO: Start an asynchronous request ###
        self._feed_dict[self._input_blob] = image
        self._exec_network.start_async(
            request_id=request_id,
            inputs=self._feed_dict)  # inputs={self._input_blob: image})
        ## ???
        # Implement exec_net() by setting a self.infer_request_handle variable
        # to an instance of self.net_plugin.start_async

        ### TODO: Return any necessary information ###
        ### Note: You may need to update the function parameters. ###
        return

    def wait(self, request_id=0, timeout_ms=-1):
        ### TODO: Wait for the request to be complete. ###
        ### TODO: Return any necessary information ###
        ### Note: You may need to update the function parameters. ###
        return self._exec_network.requests[request_id].wait(timeout_ms)  #

    def get_output(self, request_id=0):
        ### TODO: Extract and return the output results
        ### Note: You may need to update the function parameters. ###
        return self._exec_network.requests[request_id].outputs[
            self._output_blob]

    def check_unsupported_layers(self, net, device):
        """
        Checks for unsupported layers on selected device.
        Returns a set of unsupported layers (empty if there are none)
        """
        supported_layers = self._core.query_network(network=net,
                                                    device_name=device)

        unsupported = set()
        for layer, obj in net.layers.items():
            if not layer in supported_layers and obj.type != 'Input':
                log.debug(f"Unsupported layer: {layer}, Type: {obj.type}")
                unsupported.add(obj.type)

        return unsupported
示例#25
0
class GazeEstimation:
    """
    Model Inference Network
    """

    def __init__(self):
        """
         Initializing data fields.
        """
        self.ie = IECore()
        self.network = None
        self.input_blob = None
        self.output_blob = None
        self.inference_plugin = None
        self.inference_handler = None
        self.device = None

    def load_model(self, model, device, num_requests, cpu_extension=None):
        """
         Loading the necessary .xml, .bin files and adding cpu extensions
         while dealing with unsupported layers and customer layer
         implementations.

        :param model: location of the model's .xml file
        :param device: inference device to use
        :param num_requests: Request ID for the inference request
        :param cpu_extension: Location of the CPU extension to deal with
                              unsupported layers, mostly used with MKLDNN plugin.
        :return: input shape of the model in [n, c, h, w ] shape.
        """
        model_xml = model
        model_bin = os.path.splitext(model_xml)[0] + '.bin'
        self.network = self.ie.read_network(model_xml, model_bin)

        if 'CPU' in device and cpu_extension:
            self.ie.add_extension(cpu_extension, 'CPU')

        if 'CPU' in device:
            supported_layers = self.ie.query_network(self.network, 'CPU')
            unsupported_layers = [l for l in self.network.layers.keys() if l not in supported_layers]
            if len(unsupported_layers) != 0:
                log.error("One or More Unsupported Layers cannot be interpreted. Use MKLDNN Extension if not already "
                         "done")
                log.error(unsupported_layers)
                sys.exit(1)

        self.input_blob = next(iter(self.network.inputs))
        self.output_blob = next(iter(self.network.outputs))

        if num_requests == 0:
            self.inference_plugin = self.ie.load_network(self.network, device)
        else:
            self.inference_plugin = self.ie.load_network(network=self.network, device_name=device, num_requests=0)
        return self.get_input_shape()

    def get_input_shape(self):
        """
         Obtaining the Shape of the network's input.
        :return: Shape of the network in [n, c, h, w] format.
        """
        return self.network.inputs[self.input_blob].shape

    def wait(self, request_id):
        """
        To Deal with the [REQUEST BUSY] error.
        :return: (int) waiting semaphore
        """
        wait_for_inference = self.inference_plugin.requests[request_id].wait(-1)
        return wait_for_inference

    def get_output(self, request_id, prev_output=None):
        """
        Getting the output of the inference using the Asynchronous Inference
        Request.
        :param request_id: Request ID for the inference request
        :param prev_output:
        :return: result of the inference.
        """
        if prev_output:
            res = self.inference_handler.outputs[prev_output]
        else:
            res = self.inference_plugin.requests[request_id].outputs[self.output_blob]

        return res

    def get_performance_counts(self, request_id):
        """
         Get Layer wise Performance Stats.
        :param request_id:
        :return: Performance stats in json.
        """
        performance_count = self.inference_plugin.requests[request_id].get_perf_counts()
        return performance_count

    def multi_in_infer(self, request_id, le_img, re_img, hp_ang):
        inp_dict = {'left_eye_image': le_img, 'right_eye_image': re_img, 'head_pose_angles': hp_ang}
        multi_input_dict = {self.input_blob: inp_dict}
        self.inference_handler = self.inference_plugin.start_async(request_id=0, inputs=inp_dict)
        return self.inference_plugin

    def process_output(self, gaze_vector, angle_r_fc):

        gaze_vector = gaze_vector / np.linalg.norm(gaze_vector)
        gaze_x = gaze_vector[0]
        gaze_y = gaze_vector[1]
        gaze_z = gaze_vector[2]
        gaze_yaw = np.arctan(gaze_y / gaze_x)

        sin = np.sin(angle_r_fc * math.pi / 180.)
        cos = np.cos(angle_r_fc * math.pi / 180.)

        move_x = gaze_x * cos + gaze_y * sin
        move_y = - gaze_x * sin + gaze_y * cos

        gaze_yaw = gaze_yaw * np.pi / 180.0

        gaze_x_angle = np.arctan2(gaze_x, -gaze_z)
        gaze_y_angle = np.arctan2(-gaze_y, -gaze_z)

        return move_x, move_y, gaze_x_angle, gaze_y_angle, gaze_yaw
def main():

    log.basicConfig(format="[ %(levelname)s ] %(message)s",
                    level=log.INFO,
                    stream=sys.stdout)
    args = build_argparser().parse_args()
    log.info("Creating Inference Engine...")
    ie = IECore()
    if args.cpu_extension and 'CPU' in args.device:
        ie.add_extension(args.cpu_extension, "CPU")
    # Read IR
    log.info("Loading network")

    # Path to your model here
    args.model = 'gloves_model\\frozen_inference_graph.xml'
    net = ie.read_network(args.model, os.path.splitext(args.model)[0] + ".bin")

    if "CPU" in args.device:
        supported_layers = ie.query_network(net, "CPU")
        not_supported_layers = [
            l for l in net.layers.keys() if l not in supported_layers
        ]
        if len(not_supported_layers) != 0:
            log.error(
                "Following layers are not supported by the plugin for specified device {}:\n {}"
                .format(args.device, ', '.join(not_supported_layers)))
            log.error(
                "Please try to specify cpu extensions library path in sample's command line parameters using -l "
                "or --cpu_extension command line argument")
            sys.exit(1)

    img_info_input_blob = None
    feed_dict = {}
    for blob_name in net.input_info:
        if len(net.input_info[blob_name].input_data.shape) == 4:
            input_blob = blob_name
        elif len(net.input_info[blob_name].input_data.shape) == 2:
            img_info_input_blob = blob_name
        else:
            raise RuntimeError(
                "Unsupported {}D input layer '{}'. Only 2D and 4D input layers are supported"
                .format(len(net.input_info[blob_name].input_data.shape),
                        blob_name))

    output_postprocessor = get_output_postprocessor(net)

    log.info("Loading IR to the plugin...")
    exec_net = ie.load_network(network=net,
                               num_requests=2,
                               device_name=args.device)
    # Read and pre-process input image
    n, c, h, w = net.input_info[input_blob].input_data.shape
    if img_info_input_blob:
        feed_dict[img_info_input_blob] = [h, w, 1]

    # Input stream-------------------------------------------------------------

    # Labels-----------------------------------------------------------
    args.labels = 'gloves_model\\labels.pbtxt'
    if args.labels:
        with open(args.labels, 'r') as f:
            labels_map = [x.strip() for x in f]

    def UploadAction(event=None):
        global chosenInput
        chosenInput = True
        filename = filedialog.askopenfilename()
        input_stream = filename
        global cap
        cap = cv2.VideoCapture(input_stream)

    def CameraAction():
        global chosenInput
        chosenInput = True
        global cap
        cap = cv2.VideoCapture(0)

    cur_request_id = 0
    next_request_id = 1

    log.info("Starting inference in async mode...")
    is_async_mode = True
    render_time = 0

    print(
        "To close the application, press 'CTRL+C' here or switch to the output window and press ESC key"
    )
    print(
        "To switch between sync/async modes, press TAB key in the output window"
    )

    #======================================================================================================

    #Set up GUI
    window = tk.Tk()  #Makes main window
    window.wm_title("FarAhead")
    window.config(background="#FFFFFF")

    inputFrame = tk.Frame(window, width=300, height=600)
    inputFrame.grid(row=0, column=0, padx=10, pady=2)
    fileButton = tk.Button(inputFrame,
                           width=20,
                           text='Choose a file',
                           border=5,
                           command=UploadAction)
    fileButton.grid(row=0, column=1, columnspan=3)
    cameraButton = tk.Button(inputFrame,
                             width=20,
                             text='Use Camera',
                             border=5,
                             command=CameraAction)
    cameraButton.grid(row=1, column=1, columnspan=3)

    #Graphics window
    imageFrame = tk.Frame(window, width=800, height=600)
    imageFrame.grid(row=0, column=1, padx=10, pady=2)

    #Capture video frames

    # this is just a label inside the frame
    mainBg = cv2.imread('mainBG.png')
    b, g, r = cv2.split(mainBg)
    mainBg = cv2.merge((r, g, b))
    mainBg = Image.fromarray(mainBg)
    mainBg = ImageTk.PhotoImage(image=mainBg)

    lmain = tk.Label(imageFrame)
    lmain.grid(row=0, column=0)
    lmain.configure(image=mainBg)

    #>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<#
    def no_input():
        lmain.configure(image=mainBg)

    def show_frame():
        # reading the frame
        cv2image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGBA)
        #changing opencv image to pil image
        img = Image.fromarray(cv2image)
        imgtk = ImageTk.PhotoImage(image=img)
        lmain.imgtk = imgtk
        lmain.configure(image=imgtk)

    while True:
        global chosenInput
        if not chosenInput:
            no_input()

        elif chosenInput:

            if not cap.isOpened():
                chosenInput = False
                continue

            if is_async_mode:
                ret, frame = cap.read()
                if not ret:
                    chosenInput = False
                    continue  # abandons the last frame in case of async_mode
                frame_h, frame_w = frame.shape[:2]

            if cap.isOpened():

                if is_async_mode:
                    ret, next_frame = cap.read()
                else:
                    ret, frame = cap.read()
                    if ret:
                        frame_h, frame_w = frame.shape[:2]
                if not ret:
                    chosenInput = False
                    continue  # abandons the last frame in case of async_mode

                # Main sync point:
                # in the truly Async mode we start the NEXT infer request, while waiting for the CURRENT to complete
                # in the regular mode we start the CURRENT request and immediately wait for it's completion
                inf_start = time.time()
                if is_async_mode:
                    in_frame = cv2.resize(next_frame, (w, h))
                    in_frame = in_frame.transpose(
                        (2, 0, 1))  # Change data layout from HWC to CHW
                    in_frame = in_frame.reshape((n, c, h, w))
                    feed_dict[input_blob] = in_frame
                    exec_net.start_async(request_id=next_request_id,
                                         inputs=feed_dict)
                else:
                    in_frame = cv2.resize(frame, (w, h))
                    in_frame = in_frame.transpose(
                        (2, 0, 1))  # Change data layout from HWC to CHW
                    in_frame = in_frame.reshape((n, c, h, w))
                    feed_dict[input_blob] = in_frame
                    exec_net.start_async(request_id=cur_request_id,
                                         inputs=feed_dict)
                if exec_net.requests[cur_request_id].wait(-1) == 0:
                    inf_end = time.time()
                    det_time = inf_end - inf_start

                    # Parse detection results of the current request
                    for obj in output_postprocessor(
                            exec_net.requests[cur_request_id].output_blobs):
                        # Draw only objects when probability more than specified threshold
                        if obj[2] > args.prob_threshold:
                            xmin = int(obj[3] * frame_w)
                            ymin = int(obj[4] * frame_h)
                            xmax = int(obj[5] * frame_w)
                            ymax = int(obj[6] * frame_h)
                            class_id = int(obj[1])
                            # Draw box and label\class_id
                            if class_id == 1:
                                color = (50, 205, 50)
                            else:
                                color = (255, 0, 0)
                            #color = (min(class_id * 12.5, 255), min(class_id * 7, 255), min(class_id * 5, 255))
                            cv2.rectangle(frame, (xmin, ymin), (xmax, ymax),
                                          color, 5)

                            det_label = labels_map[
                                class_id] if labels_map else str(class_id)
                            cv2.putText(
                                frame, det_label + ' ' +
                                str(round(obj[2] * 100, 1)) + ' %',
                                (xmin, ymin - 7), cv2.FONT_HERSHEY_DUPLEX, 0.8,
                                (225, 225, 225), 1)

                    # Draw performance stats
                    inf_time_message = "Inference time: N\A for async mode" if is_async_mode else \
                        "Inference time: {:.3f} ms".format(det_time * 1000)
                    render_time_message = "OpenCV rendering time: {:.3f} ms".format(
                        render_time * 1000)
                    async_mode_message = "Async mode is on. Processing request {}".format(cur_request_id) if is_async_mode else \
                        "Async mode is off. Processing request {}".format(cur_request_id)

                    #cv2.putText(frame, inf_time_message, (15, 15), cv2.FONT_HERSHEY_COMPLEX, 0.5, (200, 10, 10), 1)
                    #cv2.putText(frame, render_time_message, (15, 30), cv2.FONT_HERSHEY_COMPLEX, 0.5, (10, 10, 200), 1)
                    # cv2.putText(frame, async_mode_message, (10, int(frame_h - 20)), cv2.FONT_HERSHEY_COMPLEX, 0.5,
                    #             (10, 10, 200), 1)
                    cv2image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGBA)
                    #changing opencv image to pil image
                    # img = Image.fromarray(cv2image)
                    # imgtk = ImageTk.PhotoImage(image=img)
                    # lmain.imgtk = imgtk
                    # lmain.configure(image=imgtk)

                # presenter.drawGraphs(frame)
                render_start = time.time()
                if not args.no_show:
                    show_frame()
                    # cv2.imshow('det',frame)

                render_end = time.time()
                render_time = render_end - render_start

                if is_async_mode:
                    cur_request_id, next_request_id = next_request_id, cur_request_id
                    frame = next_frame
                    frame_h, frame_w = frame.shape[:2]

                if not args.no_show:
                    key = cv2.waitKey(1)
                    if key == 27:
                        break
                    if (9 == key):
                        is_async_mode = not is_async_mode
                        log.info("Switched to {} mode".format(
                            "async" if is_async_mode else "sync"))

        window.update_idletasks()
        window.update()
示例#27
0
class FaceDetectionClass:
    def __init__(self, model_name, device, threshold, extensions=None):

        self.model_weights = model_name + '.bin'
        self.model_structure = model_name + ".xml"
        self.device = device
        self.threshold = threshold
        self.extension = extensions
        self.network = None
        self.plugin = None
        self.exec_net = None

    def load_model(self):

        self.plugin = IECore()
        self.check_model(self.model_structure, self.model_weights)

        if not all_layers_supported(self.plugin, self.network):
            self.plugin.add_extension(self.extension, self.device)

        # Load model
        self.exec_net = self.plugin.load_network(network=self.network,
                                                 device_name=self.device,
                                                 num_requests=1)
        self.input_name = next(iter(self.network.inputs))
        self.input_shape = self.network.inputs[self.input_name].shape
        self.output_name = next(iter(self.network.outputs))
        self.output_shape = self.network.outputs[self.output_name].shape

    def predict(self, image):

        p_image = self.preprocess_input(image)
        results = self.exec_net.infer({self.input_name: p_image})
        coordinates = self.preprocess_output(results, image)

        if len(coordinates) == 0:
            return 0, 0

        cropped_face = image[coordinates[1]:coordinates[3],
                             coordinates[0]:coordinates[2]]

        return coordinates, cropped_face

    def check_model(self, model_structure, model_weights):
        try:
            self.network = IENetwork(model_structure, model_weights)
        except Exception as e:
            raise ValueError("Could not Initialize Network")

    def preprocess_input(self, image):

        p_frame = cv2.resize(image, (self.input_shape[3], self.input_shape[2]))
        p_frame = p_frame.transpose((2, 0, 1))
        p_frame = p_frame.reshape(1, *p_frame.shape)

        return p_frame

    def preprocess_output(self, outputs, image):

        coordinates = []
        outputs = outputs[self.output_name][0][0]
        w, h = image.shape[1], image.shape[0]

        for output in outputs:
            confidence = output[2]
            if confidence >= self.threshold:
                xmin = int(output[3] * w)
                ymin = int(output[4] * h)
                xmax = int(output[5] * w)
                ymax = int(output[6] * h)
                coordinates.append([xmin, ymin, xmax, ymax])

        return list(map(int, coordinates[0]))
示例#28
0
class Network:
    """
    Load and configure inference plugins for the specified target devices 
    and performs synchronous and asynchronous modes for the specified infer requests.
    """
    def __init__(self):
        ### TODO: Initialize any class variables desired ###
        self.plugin = None
        self.network = None
        self.input_blob = None
        self.output_blob = None
        self.exec_network = None
        self.infer_request = None

    def load_model(self, model, CPU_EXTENSION, DEVICE, console_output=False):
        ### TODO: Load the model ###
        model_xml = model
        model_bin = os.path.splitext(model_xml)[0] + ".bin"

        self.plugin = IECore()
        self.network = IENetwork(model=model_xml, weights=model_bin)
        ### TODO: Check for supported layers ###
        #if not all_layers_supported(self.plugin, self.network, console_output=console_output):

        supported_layers = self.plugin.query_network(self.network,
                                                     device_name="CPU")

        for layer in self.network.layers.keys():
            if layer not in supported_layers:
                print(
                    "Check whether extensions are available to add to IECore.")

        self.plugin.add_extension(CPU_EXTENSION, DEVICE)

        self.exec_network = self.plugin.load_network(self.network, DEVICE)
        # Get the input layer
        self.input_blob = next(iter(self.network.inputs))
        self.output_blob = next(iter(self.network.outputs))

        ### TODO: Return the loaded inference plugin ###
        ### Note: You may need to update the function parameters. ###
        return

    def get_input_shape(self):
        ### TODO: Return the shape of the input layer ###
        all_shapes = {}
        for shape in self.network.inputs:
            all_shapes[shape] = (self.network.inputs[shape].shape)
        return all_shapes

    def exec_net(self, net_input, request_id):
        ### TODO: Start an asynchronous request ###
        ### TODO: Return any necessary information ###
        self.infer_request_handle = self.exec_network.start_async(
            request_id, inputs=net_input)
        ### TODO: Return any necessary information ###
        ### Note: You may need to update the function parameters. ###
        return

    def wait(self):
        ### TODO: Wait for the request to be complete. ###
        ### TODO: Return any necessary information ###
        ### Note: You may need to update the function parameters. ###
        return self.infer_request_handle.wait()

    def get_output(self):
        ### TODO: Extract and return the output results
        ### Note: You may need to update the function parameters. ###
        return self.infer_request_handle.outputs[self.output_blob]
示例#29
0
class GazeEstimation:
    '''
    Class for the Face Detection Model.
    '''
    def __init__(self, model_name, device='CPU', extensions=None):
        '''
        TODO: Use this to set your instance variables.
        '''
        self.model_name = model_name
        self.model_structure = self.model_name
        self.model_weights = self.model_name.split('.')[0] + '.bin'
        self.device = device
        self.extensions = extensions
        self.core = None
        self.model = None
        self.net = None
        self.input_name = None
        self.input_shape = None
        self.output_names = None
        self.output_shape = None

    def load_model(self):
        '''
        TODO: You will need to complete this method.
        This method is for loading the model to the device specified by the user.
        If your model requires any Plugins, this is where you can load them.
        '''
        self.core = IECore()
        self.model = IENetwork(self.model_structure, self.model_weights)

        supported_layers = self.core.query_network(self.model,
                                                   device_name=self.device)
        unsupported_layers = [
            l for l in self.model.layers.keys() if l not in supported_layers
        ]
        if len(unsupported_layers) != 0 and self.device == 'CPU':
            print("Unsupported layers found: {}".format(unsupported_layers))
            if not self.extensions == None:
                self.core.add_extension(self.extensions, self.device)
                supported_layers = self.core.query_network(
                    network=self.model, device_name=self.device)
                unsupported_layers = [
                    l for l in self.model.layers.keys()
                    if l not in supported_layers
                ]
                if len(unsupported_layers) != 0:
                    print(
                        "Even adding the extension there are unsupported layers found"
                    )
                    exit(1)
            else:
                print(
                    "Check whether extensions are available to add to IECore and provide the path."
                )
                exit(1)

        self.net = self.core.load_network(network=self.model,
                                          device_name=self.device,
                                          num_requests=1)
        self.input_name = [i for i in self.model.inputs.keys()]
        self.input_shape = self.model.inputs[self.input_name[1]].shape
        self.output_names = [i for i in self.model.outputs.keys()]

    def predict(self, left_eye_img, right_eye_img, head_pose_angle):
        '''
        TODO: You will need to complete this method.
        This method is meant for running predictions on the input image.
        '''
        left_eye_img_proc, right_eye_img_proc = self.preprocess_input(
            left_eye_img, right_eye_img)
        results = self.net.infer({
            'head_pose_angles': head_pose_angle,
            'left_eye_image': left_eye_img_proc,
            'right_eye_image': right_eye_img_proc
        })
        new_mouse_coord, gaze_vector = self.preprocess_output(
            results, head_pose_angle)

        return new_mouse_coord, gaze_vector

    def check_model(self):
        pass

    def preprocess_input(self, left_eye_img, right_eye_img):
        '''
        Before feeding the data into the model for inference,
        you might have to preprocess it. This function is where you can do that.
        '''
        left_eye_img_proc = cv2.resize(
            left_eye_img, (self.input_shape[3], self.input_shape[2]))
        left_eye_img_proc = np.transpose(
            np.expand_dims(left_eye_img_proc, axis=0), (0, 3, 1, 2))

        right_eye_img_proc = cv2.resize(
            right_eye_img, (self.input_shape[3], self.input_shape[2]))
        right_eye_img_proc = np.transpose(
            np.expand_dims(right_eye_img_proc, axis=0), (0, 3, 1, 2))

        return left_eye_img_proc, right_eye_img_proc

    def preprocess_output(self, outputs, head_pose_estimation):
        '''
        Before feeding the output of this model to the next model,
        you might have to preprocess the output. This function is where you can do that.
        '''
        gaze_vector = outputs[self.output_names[0]].tolist()[0]
        roll_angle = head_pose_estimation[2]
        cos_angle = math.cos(roll_angle * math.pi / 180.0)
        sin_angle = math.sin(roll_angle * math.pi / 180.0)

        x_coord = gaze_vector[0] * cos_angle + gaze_vector[1] * sin_angle
        y_coord = gaze_vector[1] * cos_angle - gaze_vector[0] * sin_angle

        return (x_coord, y_coord), gaze_vector
示例#30
0
class Network:
    """
    Load and configure inference plugins for the specified target devices 
    and performs synchronous and asynchronous modes for the specified infer requests.
    """
    def __init__(self):
        ### TODO: Initialize any class variables desired ###
        self.plugin = IECore()
        self.exec_network = None
        self.net = None
        self.input_layer = None

    def load_model(self, xml_path, num_requests, device_name, cpu_extension):
        ### TODO: Load the model ###
        self.net = IENetwork(model=xml_path,
                             weights=xml_path.split('.')[0] + '.bin')
        ### TODO: Check for supported layers ###
        supported_layers = self.plugin.query_network(network=self.net,
                                                     device_name=device_name)
        unsupported_layers = [
            l for l in self.net.layers.keys() if l not in supported_layers
        ]

        if len(unsupported_layers) != 0:
            #print("unsupported layers found:{}".format(unsupported_layers))
            if not cpu_extension == None:
                #print("Adding cpu_extension")
                self.plugin.add_extension(cpu_extension, device_name)
                supported_layers = self.plugin.query_network(
                    network=self.net, device_name=device_name)
                unsupported_layers = [
                    l for l in self.net.layers.keys()
                    if l not in supported_layers
                ]
                if len(unsupported_layers) != 0:
                    #print("After adding the extension still unsupported layers found")
                    exit(1)
                #print("After adding the extension the issue is resolved")
            else:
                #print("Give the path of cpu extension")
                exit(1)
        ### TODO: Add any necessary extensions ###

        ### TODO: Return the loaded inference plugin ###
        self.exec_network = self.plugin.load_network(network=self.net,
                                                     num_requests=num_requests,
                                                     device_name=device_name)
        ### Note: You may need to update the function parameters. ###
        self.input_layer = next(iter(self.net.inputs))
        return

    def get_input_shape(self):
        ### TODO: Return the shape of the input layer ###

        return self.net.inputs[self.input_layer].shape

    def exec_net(self, frame, req_id):
        ### TODO: Start an asynchronous request ###
        ### TODO: Return any necessary information ###
        ### Note: You may need to update the function parameters. ###
        self.exec_network.start_async(request_id=req_id,
                                      inputs={self.input_layer: frame})
        return

    def wait(self, req_id):
        ### TODO: Wait for the request to be complete. ###
        ### TODO: Return any necessary information ###
        ### Note: You may need to update the function parameters. ###
        return self.exec_network.requests[req_id].wait(-1)

    def get_output(self, req_id):
        ### TODO: Extract and return the output results
        ### Note: You may need to update the function parameters. ###
        out = self.exec_network.requests[req_id].outputs
        return [out[i] for i in out.keys()]