def main(): args = build_argparser().parse_args() paragraphs = get_paragraphs(args.input) preprocessing_start_time = perf_counter() vocab = load_vocab_file(args.vocab) log.debug("Loaded vocab file from {}, get {} tokens".format( args.vocab, len(vocab))) # get context as a string (as we might need it's length for the sequence reshape) context = '\n'.join(paragraphs) visualizer = Visualizer(context, args.colors) # encode context into token ids list c_tokens = text_to_tokens(context.lower(), vocab) total_latency = (perf_counter() - preprocessing_start_time) * 1e3 if args.adapter == 'openvino': plugin_config = get_user_config(args.device, args.num_streams, args.num_threads) model_adapter = OpenvinoAdapter( create_core(), args.model, device=args.device, plugin_config=plugin_config, max_num_requests=args.num_infer_requests) elif args.adapter == 'ovms': model_adapter = OVMSAdapter(args.model) config = { 'vocab': vocab, 'input_names': args.input_names, 'output_names': args.output_names, 'max_answer_token_num': args.max_answer_token_num, 'squad_ver': args.model_squad_ver } model = BertQuestionAnswering(model_adapter, config) if args.reshape: # find the closest multiple of 64, if it is smaller than current network's sequence length, do reshape new_length = min( model.max_length, int( np.ceil( (len(c_tokens[0]) + args.max_question_token_num) / 64) * 64)) if new_length < model.max_length: try: model.reshape(new_length) except RuntimeError: log.error( "Failed to reshape the network, please retry the demo without '-r' option" ) sys.exit(-1) else: log.debug( "\tSkipping network reshaping," " as (context length + max question length) exceeds the current (input) network sequence length" ) model.log_layers_info() pipeline = AsyncPipeline(model) if args.questions: def questions(): for question in args.questions: log.info("\n\tQuestion: {}".format(question)) yield question else: def questions(): while True: yield input('\n\tType a question (empty string to exit): ') for question in questions(): if not question.strip(): break answers = [] next_window_id = 0 next_window_id_to_show = 0 start_time = perf_counter() q_tokens_id, _ = text_to_tokens(question.lower(), vocab) source = ContextSource(q_tokens_id, c_tokens, model.max_length) while True: if pipeline.callback_exceptions: raise pipeline.callback_exceptions[0] results = pipeline.get_result(next_window_id_to_show) if results: next_window_id_to_show += 1 update_answers_list(answers, results[0]) continue if pipeline.is_ready(): if source.is_over(): break pipeline.submit_data(source.get_data(), next_window_id, None) next_window_id += 1 else: pipeline.await_any() pipeline.await_all() for window_id in range(next_window_id_to_show, next_window_id): results = pipeline.get_result(window_id) while results is None: results = pipeline.get_result(window_id) update_answers_list(answers, results[0]) visualizer.show_answers(answers) total_latency += (perf_counter() - start_time) * 1e3 log.info("Metrics report:") log.info("\tLatency: {:.1f} ms".format(total_latency))
def main(): args = build_argparser().parse_args() paragraphs = get_paragraphs(args.input) preprocessing_start_time = perf_counter() vocab = load_vocab_file(args.vocab) log.debug("Loaded vocab file from {}, get {} tokens".format(args.vocab, len(vocab))) # get context as a string (as we might need it's length for the sequence reshape) context = '\n'.join(paragraphs) sentences = re.split(sentence_splitter, context) preprocessed_sentences = [text_to_tokens(sentence, vocab) for sentence in sentences] max_sentence_length = max([len(tokens) + 2 for tokens, _ in preprocessed_sentences]) preprocessing_total_time = (perf_counter() - preprocessing_start_time) * 1e3 source = tuple(zip(sentences, preprocessed_sentences)) if args.adapter == 'openvino': plugin_config = get_user_config(args.device, args.num_streams, args.num_threads) model_adapter = OpenvinoAdapter(create_core(), args.model, device=args.device, plugin_config=plugin_config, max_num_requests=args.num_infer_requests, model_parameters = {'input_layouts': args.layout}) elif args.adapter == 'ovms': model_adapter = OVMSAdapter(args.model) enable_padding = not args.dynamic_shape model = BertNamedEntityRecognition(model_adapter, {'vocab': vocab, 'input_names': args.input_names, 'enable_padding': enable_padding}) if max_sentence_length > model.max_length: model.reshape(max_sentence_length if enable_padding else (1, max_sentence_length)) model.log_layers_info() pipeline = AsyncPipeline(model) next_sentence_id = 0 next_sentence_id_to_show = 0 start_time = perf_counter() while True: if pipeline.callback_exceptions: raise pipeline.callback_exceptions[0] results = pipeline.get_result(next_sentence_id_to_show) if results: (score, filtered_labels_id), meta = results next_sentence_id_to_show += 1 print_raw_results(score, filtered_labels_id, meta) continue if pipeline.is_ready(): if next_sentence_id == len(source): break sentence, (c_tokens_id, c_token_s_e) = source[next_sentence_id] pipeline.submit_data(c_tokens_id, next_sentence_id, {'sentence': sentence, 'c_token_s_e': c_token_s_e}) next_sentence_id += 1 else: pipeline.await_any() pipeline.await_all() if pipeline.callback_exceptions: raise pipeline.callback_exceptions[0] for sentence_id in range(next_sentence_id_to_show, next_sentence_id): results = pipeline.get_result(sentence_id) (score, filtered_labels_id), meta = results print_raw_results(score, filtered_labels_id, meta) total_latency = (perf_counter() - start_time) * 1e3 + preprocessing_total_time log.info("Metrics report:") log.info("\tLatency: {:.1f} ms".format(total_latency))
def main(): args = build_argparser().parse_args() paragraphs = get_paragraphs(args.input) vocab_start_time = perf_counter() vocab = load_vocab_file(args.vocab) log.debug("Loaded vocab file from {}, get {} tokens".format( args.vocab, len(vocab))) visualizer = Visualizer(args.colors) total_latency = (perf_counter() - vocab_start_time) * 1e3 ie = create_core() plugin_config = get_user_config(args.device, args.num_streams, args.num_threads) model_emb_adapter = OpenvinoAdapter( ie, args.model_emb, device=args.device, plugin_config=plugin_config, max_num_requests=args.num_infer_requests) model_emb = BertEmbedding(model_emb_adapter, { 'vocab': vocab, 'input_names': args.input_names_emb }) model_emb.log_layers_info() # reshape BertEmbedding model to infer short questions and long contexts max_len_context = 384 max_len_question = 32 for new_length in [max_len_question, max_len_context]: model_emb.reshape(new_length) if new_length == max_len_question: emb_exec_net = ie.load_network(model_emb_adapter.net, args.device) else: emb_pipeline = AsyncPipeline(model_emb) if args.model_qa: model_qa_adapter = OpenvinoAdapter( ie, args.model_qa, device=args.device, plugin_config=plugin_config, max_num_requests=args.num_infer_requests) config = { 'vocab': vocab, 'input_names': args.input_names_qa, 'output_names': args.output_names_qa, 'max_answer_token_num': args.max_answer_token_num, 'squad_ver': args.model_qa_squad_ver } model_qa = BertQuestionAnswering(model_qa_adapter, config) model_qa.log_layers_info() qa_pipeline = AsyncPipeline(model_qa) log.info("\t\tStage 1 (Calc embeddings for the context)") contexts_all = [] start_time = perf_counter() # get context as string and then encode it into token id list # calculate number of tokens for context in each request. # reserve 3 positions for special tokens [CLS] q_tokens [SEP] c_tokens [SEP] if args.model_qa: # to make context be able to pass model_qa together with question c_window_len = model_qa.max_length - (max_len_question + 3) else: # to make context be able to pass model_emb without question c_window_len = max_len_context - 2 def calc_question_embedding(tokens_id): num = min(max_len_question - 2, len(tokens_id)) inputs, _ = model_emb.preprocess((tokens_id[:num], max_len_question)) raw_result = emb_exec_net.infer(inputs) return model_emb.postprocess(raw_result, None) source = ContextSource(paragraphs, vocab, c_window_len) next_window_id = 0 next_window_id_to_show = 0 contexts_all = [] while True: if emb_pipeline.callback_exceptions: raise emb_pipeline.callback_exceptions[0] results = emb_pipeline.get_result(next_window_id_to_show) if results: embedding, meta = results meta['c_data'].emb = embedding contexts_all.append(meta['c_data']) next_window_id_to_show += 1 continue if emb_pipeline.is_ready(): if source.is_over(): break c_data = source.get_data() num = min(max_len_context - 2, len(c_data.c_tokens_id)) emb_pipeline.submit_data( (c_data.c_tokens_id[:num], max_len_context), next_window_id, {'c_data': c_data}) next_window_id += 1 else: emb_pipeline.await_any() emb_pipeline.await_all() for window_id in range(next_window_id_to_show, next_window_id): results = emb_pipeline.get_result(window_id) while results is None: results = emb_pipeline.get_result(window_id) embedding, meta = results meta['c_data'].emb = embedding contexts_all.append(meta['c_data']) next_window_id_to_show += 1 total_latency += (perf_counter() - start_time) * 1e3 context_embeddings_time = total_latency if args.questions: def questions(): for question in args.questions: log.info("\n\tQuestion: {}".format(question)) yield question else: def questions(): while True: yield input('\n\tType a question (empty string to exit): ') for question in questions(): if not question.strip(): break start_time = perf_counter() log.info( "\t\tStage 2 (Calc question embedding and compare with {} context embeddings)" .format(len(contexts_all))) q_tokens_id, _ = text_to_tokens(question.lower(), vocab) q_emb = calc_question_embedding(q_tokens_id) distances = [(np.linalg.norm(context.emb - q_emb, 2), context) for context in contexts_all] distances.sort(key=lambda x: x[0]) keep_num = min(args.best_n, len(distances)) distances_filtered = distances[:keep_num] log.info( "The closest {} contexts to question filtered from {} context embeddings:" .format(keep_num, len(distances))) visualizer.show_closest_contexts(distances_filtered) if args.model_qa: answers = [] next_context_id = 0 next_context_id_to_show = 0 while True: if qa_pipeline.callback_exceptions: raise qa_pipeline.callback_exceptions[0] results = qa_pipeline.get_result(next_context_id_to_show) if results: next_context_id_to_show += 1 output, meta = results update_answers_list(answers, output, meta['c_data']) continue if qa_pipeline.is_ready(): if next_context_id == len(distances_filtered): break _, c_data = distances_filtered[next_context_id] qa_pipeline.submit_data((c_data, q_tokens_id), next_context_id, {'c_data': c_data}) next_context_id += 1 else: qa_pipeline.await_any() qa_pipeline.await_all() for context_id in range(next_context_id_to_show, next_context_id): results = qa_pipeline.get_result(context_id) while results is None: results = qa_pipeline.get_result(context_id) output, meta = results update_answers_list(answers, output, meta['c_data']) log.info( "\t\tStage 3 (Show top 3 answers from {} closest contexts of Stage 1)" .format(len(answers))) answers = sorted(answers, key=lambda x: -x[0])[:3] visualizer.show_answers(answers) total_latency += (perf_counter() - start_time) * 1e3 log.info("Metrics report:") log.info("\tContext embeddings latency (stage 1): {:.1f} ms".format( context_embeddings_time)) log.info("\tLatency (all stages): {:.1f} ms".format(total_latency))