示例#1
0
def test_proposal_props():
    float_dtype = np.float32
    batch_size = 1
    post_nms_topn = 20
    probs = ov.parameter(Shape([batch_size, 8, 255, 255]), dtype=float_dtype, name="probs")
    deltas = ov.parameter(Shape([batch_size, 16, 255, 255]), dtype=float_dtype, name="bbox_deltas")
    im_info = ov.parameter(Shape([4]), dtype=float_dtype, name="im_info")

    attrs = {
        "base_size": np.uint32(85),
        "pre_nms_topn": np.uint32(10),
        "post_nms_topn": np.uint32(post_nms_topn),
        "nms_thresh": np.float32(0.34),
        "feat_stride": np.uint32(16),
        "min_size": np.uint32(32),
        "ratio": np.array([0.1, 1.5, 2.0, 2.5], dtype=np.float32),
        "scale": np.array([2, 3, 3, 4], dtype=np.float32),
    }

    node = ov.proposal(probs, deltas, im_info, attrs)

    assert node.get_type_name() == "Proposal"
    assert node.get_output_size() == 2

    assert list(node.get_output_shape(0)) == [batch_size * post_nms_topn, 5]
    assert list(node.get_output_shape(1)) == [batch_size * post_nms_topn]
    assert node.get_output_element_type(0) == Type.f32
    assert node.get_output_element_type(1) == Type.f32
def test_dynamic_set_attribute_value(int_dtype, fp_dtype):
    attributes = {
        "base_size": int_dtype(1),
        "pre_nms_topn": int_dtype(20),
        "post_nms_topn": int_dtype(64),
        "nms_thresh": fp_dtype(0.34),
        "feat_stride": int_dtype(16),
        "min_size": int_dtype(32),
        "ratio": np.array([0.1, 1.5, 2.0, 2.5], dtype=fp_dtype),
        "scale": np.array([2, 3, 3, 4], dtype=fp_dtype),
    }
    batch_size = 7

    class_probs = ov.parameter([batch_size, 12, 34, 62], fp_dtype,
                               "class_probs")
    bbox_deltas = ov.parameter([batch_size, 24, 34, 62], fp_dtype,
                               "bbox_deltas")
    image_shape = ov.parameter([3], fp_dtype, "image_shape")
    node = ov.proposal(class_probs, bbox_deltas, image_shape, attributes)

    node.set_base_size(int_dtype(15))
    node.set_pre_nms_topn(int_dtype(7))
    node.set_post_nms_topn(int_dtype(33))
    node.set_nms_thresh(fp_dtype(1.55))
    node.set_feat_stride(int_dtype(8))
    node.set_min_size(int_dtype(123))
    node.set_ratio(np.array([1.1, 2.5, 3.0, 4.5], dtype=fp_dtype))
    node.set_scale(np.array([2.1, 3.2, 3.3, 4.4], dtype=fp_dtype))
    node.set_clip_before_nms(True)
    node.set_clip_after_nms(True)
    node.set_normalize(True)
    node.set_box_size_scale(fp_dtype(1.34))
    node.set_box_coordinate_scale(fp_dtype(0.88))
    node.set_framework("OpenVINO")

    assert node.get_base_size() == int_dtype(15)
    assert node.get_pre_nms_topn() == int_dtype(7)
    assert node.get_post_nms_topn() == int_dtype(33)
    assert np.isclose(node.get_nms_thresh(), fp_dtype(1.55))
    assert node.get_feat_stride() == int_dtype(8)
    assert node.get_min_size() == int_dtype(123)
    assert np.allclose(node.get_ratio(),
                       np.array([1.1, 2.5, 3.0, 4.5], dtype=fp_dtype))
    assert np.allclose(node.get_scale(),
                       np.array([2.1, 3.2, 3.3, 4.4], dtype=fp_dtype))
    assert node.get_clip_before_nms()
    assert node.get_clip_after_nms()
    assert node.get_normalize()
    assert np.isclose(node.get_box_size_scale(), fp_dtype(1.34))
    assert np.isclose(node.get_box_coordinate_scale(), fp_dtype(0.88))
    assert node.get_framework() == "OpenVINO"
def _proposal_node():
    attributes = {
        "base_size": np.uint16(1),
        "pre_nms_topn": np.uint16(20),
        "post_nms_topn": np.uint16(64),
        "nms_thresh": np.float64(0.34),
        "feat_stride": np.uint16(16),
        "min_size": np.uint16(32),
        "ratio": np.array([0.1, 1.5, 2.0, 2.5], dtype=np.float64),
        "scale": np.array([2, 3, 3, 4], dtype=np.float64),
    }
    batch_size = 7

    class_probs = ov.parameter([batch_size, 12, 34, 62], np.float64,
                               "class_probs")
    bbox_deltas = ov.parameter([batch_size, 24, 34, 62], np.float64,
                               "bbox_deltas")
    image_shape = ov.parameter([3], np.float64, "image_shape")
    return ov.proposal(class_probs, bbox_deltas, image_shape, attributes)