def common_backpropdata_extender(op: Node): for attr in ['strides', 'output_padding', 'pads_begin', 'pads_end', 'dilations']: Extender.attr_to_list(op, attr) if op.has_valid('output_padding'): op.output_padding = int64_array([0, 0] + op.output_padding) dim = len(op.strides) if op.has_valid('pads_begin') and op.has_valid('pads_end'): pad = [[0, 0], [0, 0]] pad.extend([[op.pads_begin[i], op.pads_end[i]] for i in range(dim)]) op['pad'] = int64_array(pad) op['spatial_dims'] = [i + 2 for i in range(dim)] if not op.has_valid('dilations'): op['dilations'] = [1 for _ in range(dim)] if not op.has_valid('strides'): op['strides'] = [1 for _ in range(dim)] op['dilation'] = int64_array([1, 1] + op.dilations) op['stride'] = int64_array([1, 1] + op.strides) op['infer'] = backpropdata_infer
def extend(op: Node): if not op.has_valid('activations'): op['activations'] = None mark_input_bins(op, start_port=2) op['need_copy_input_blobs'] = True
def extend(op: Node): for attr in [ 'strides', 'dilations', 'pads_begin', 'pads_end', 'output_padding' ]: Extender.attr_to_list(op, attr) op['stride'] = int64_array([1, 1] + op.strides) op['dilation'] = int64_array([1, 1] + op.dilations) op['batch_dims'] = int64_array([0]) op['channel_dims'] = int64_array([1]) if op.has_valid('output_padding'): op.output_padding = int64_array([0, 0] + op.output_padding) # Be VERY careful with these attributes! op['input_feature_channel'] = 1 op['output_feature_channel'] = 0 dim = len(op.pads_begin) assert dim in (1, 2, 3), '{}D Convolution not supported!'.format(dim) pad = [[0, 0], [0, 0]] pad.extend([[op.pads_begin[i], op.pads_end[i]] for i in range(dim)]) op['pad'] = int64_array(pad) op['spatial_dims'] = [i + 2 for i in range(dim)]
def attr_restore(node: Node, attribute: str, value=None): # Function to restore some specific attr for PriorBox & PriorBoxClustered layers if not node.has_valid(attribute): node[attribute] = [] if value is None else [value] if isinstance(node[attribute], str): node[attribute] = [] else: Extender.attr_to_list(node, attribute)
def extend(op: Node): assert op.has_valid( 'element_type' ), 'Parameter node {} has missed element_type attr!'.format(op.name) op['data_type'] = destination_type_to_np_data_type(op.element_type) if op.shape == '': op.shape = int64_array([]) else: Extender.attr_to_list(op, 'shape') if -1 in op.shape: op.shape = shape_array([ d if d != -1 else dynamic_dimension_value for d in op.shape ])
def extend(op: Node): assert op.has_valid( 'element_type' ), 'Parameter node {} has missed element_type attr!'.format(op.name) op['data_type'] = destination_type_to_np_data_type(op.element_type) if op.shape == '': op.shape = int64_array([]) else: Extender.attr_to_list(op, 'shape') for i, dim in enumerate(op.shape): if dim == -1 or (isinstance(dim, str) and ".." in dim): op.shape[i] = -1 op.shape = shape_array( [d if d != -1 else dynamic_dimension_value for d in op.shape])
def extend(op: Node): assert op.has_valid( 'element_type' ), 'Parameter node {} has missed element_type attr!'.format(op.name) op['data_type'] = destination_type_to_np_data_type(op.element_type) if op.shape == '': op.shape = int64_array([]) else: Extender.attr_to_list(op, 'shape') shape = op.shape.copy() has_shapes_with_boundaries = False for i, dim in enumerate(op.shape): if dim == -1 or (isinstance(dim, str) and ".." in dim): shape[i] = -1 if ".." in dim: has_shapes_with_boundaries = True shape = shape_array([ d if d not in [-1, '?'] else dynamic_dimension_value for d in shape ]) if has_shapes_with_boundaries: shape_list = [] for i, dim in enumerate(op.shape): if not isinstance(dim, str): shape_list.append(dim) else: shape_list.append(parse_dimension(dim)) # This value is used only for serialization of partial shapes with boundaries # for Parameter node. # 'user_shape' is not used in shape inference, as propagation of partial shapes with boundaries # is not implemented in MO. op['user_shape'] = tuple(shape_list) # If 'user_shape' is not set, 'shape' attribute is used for serialization. # 'shape' is also used for shape inference. op.shape = shape
def extend(op: Node): if op.has_valid('output_type'): op['output_type'] = destination_type_to_np_data_type( op.output_type)
def attr_to_list(node: Node, attribute: str): if not node.has_valid(attribute): log.warning('Attribute {} missed in node {} with type {}!'.format( attribute, node.soft_get('name'), node.soft_get('type'))) elif not isinstance(node[attribute], list): node[attribute] = [node[attribute]]
def extend(op: Node): if op.out_port(0).disconnected(): op['remove_values_output'] = True if op.has_valid('index_element_type'): op['index_element_type'] = destination_type_to_np_data_type( op.index_element_type)
def extend(op: Node): if op.has_valid('classes_index_type'): op['classes_index_type'] = destination_type_to_np_data_type(op.classes_index_type) if op.has_valid('sequence_length_type'): op['sequence_length_type'] = destination_type_to_np_data_type(op.sequence_length_type)
def extend(op: Node): if not op.has_valid('activations'): op['activations'] = None
def extend(op: Node): if not op.has_valid('activations'): op['activations'] = None op['infer'] = Extender.use_shapes_from_ir