示例#1
0
def mutate(num_objectives, X_pool, X_hi, X_lo, mui, pop_size, seed):
    # The method "mutate" requires the following parameters:
    # X_pool : The population from the previous generation
    # X_hi : Max. Values of Xi
    # X_lo : Min. Values of Xi
    # pop_size : Population Size
    # seed_gen : For random number gen

    random.seed(seed)
    num_params = len(X_hi)
    X_mut = []
    for i in range(0, pop_size, 1):
        xm = []
        rn = random.random()
        rnmut = random.uniform(0, 1)

        if rnmut < 0.1:
            for j in range(0, num_params, 1):
                val = X_pool[i][j] + (X_hi[j] - X_lo[j]) * delta_calculator(
                    rn, mui)
                if val > X_hi[j]:
                    val = X_hi[j]
                elif val < X_lo[j]:
                    val = X_lo[j]
                xm.append(val)

            x_ev = xm
            for k in range(0, num_objectives, 1):
                xm.append(evaluate(k, x_ev))

            X_mut.append(xm)

        else:
            x_nil = X_pool[i]
            for k in range(0, num_objectives, 1):
                x_nil.append(0)
                x_nil[num_params + k] = evaluate(k, x_nil)
            X_mut.append(x_nil)

    return X_mut
def initialize(X_hi, X_lo, pop_size, num_objectives):

    X_init = [[0 for x in range(len(X_hi) + num_objectives)]
              for y in range(pop_size)]
    for i in range(0, pop_size, 1):
        for j in range(0, len(X_hi), 1):
            rn = random.uniform(0, 1)
            X_init[i][j] = round(X_lo[j] + rn * (X_hi[j] - X_lo[j]), 4)

        for k in range(0, num_objectives, 1):
            X_init[i][len(X_hi) + k] = evaluate(k, X_init[i][:len(X_hi)])

    return X_init
示例#3
0
def selection(num_obj, X_trial, X_target, pop_size, num_params):

    X_sel = [[0 for x in range(num_params)] for y in range(pop_size)]
    for i in range(0, pop_size, 1):
        trial_wins = 0

        trial_F_val = []
        target_F_val = []
        for j in range(0, num_obj, 1):
            trial_F_val.append(evaluate(j, X_trial[i]))
            target_F_val.append(X_target[i][num_params + j])
            if trial_F_val[j] < target_F_val[j]:
                trial_wins = 1

        if trial_wins == 1:
            X_sel[i] = X_trial[i][:num_params] + trial_F_val

        else:
            X_sel[i] = X_target[i][:num_params] + target_F_val

    return X_sel
示例#4
0
def genetic_operator(num_objectives, X_pool, X_hi, X_lo, cxi, mui, pop_size,
                     num_params, seed):

    mutated = 0
    crossed = 0
    p = 1

    random.seed(seed)
    X_daughters = []
    for i in range(0, pop_size, 1):
        # Performing Crossover with 90% probability
        cxp = random.uniform(0, 1)
        rn = random.sample(range(0, pop_size - 1),
                           3)  # List of 3 random numbers
        if cxp < 0.9:

            xd1 = []
            xd2 = []

            for j in range(0, num_params, 1):
                rn_beta = random.random()
                beta = beta_calculator(rn_beta, cxi)
                xd1_val = (0.5 * ((1 - beta) * X_pool[rn[0]][j] +
                                  (1 + beta) * X_pool[rn[1]][j]))
                if xd1_val > X_hi[j]:
                    xd1_val = X_hi[j]
                elif xd1_val < X_lo[j]:
                    xd1_val = X_lo[j]
                xd2_val = (0.5 * ((1 + beta) * X_pool[rn[0]][j] +
                                  (1 - beta) * X_pool[rn[1]][j]))
                if xd2_val > X_hi[j]:
                    xd2_val = X_hi[j]
                elif xd2_val < X_lo[j]:
                    xd2_val = X_lo[j]

                xd1.append(xd1_val)
                xd2.append(xd2_val)

                mup = random.uniform(0, 1)
                if mup < 0.1:
                    xd1[j] = X_lo[j] + random.uniform(0,
                                                      1) * (X_hi[j] - X_lo[j])
                    xd2[j] = X_lo[j] + random.uniform(0,
                                                      1) * (X_hi[j] - X_lo[j])

            xev1 = xd1
            xev2 = xd2
            for k in range(0, num_objectives, 1):
                xd1.append(evaluate(k, xev1))
                xd2.append(evaluate(k, xev2))

            crossed = 1
            mutated = 0

        else:
            XM = []
            XP = X_pool[rn[2]]
            for j in range(0, num_params, 1):
                rn = random.random()
                val = XP[j] + delta_calculator(rn, mui)
                if val > X_hi[j]:
                    val = X_hi[j]
                elif val < X_lo[j]:
                    val = X_lo[j]
                XM.append(val)

            x_ev = XM
            for k in range(0, num_objectives, 1):
                XM.append(evaluate(k, x_ev))

            mutated = 1
            crossed = 0

        if crossed:
            X_daughters.append(xd1)
            X_daughters.append(xd2)
            crossed = 0

        elif mutated:
            X_daughters.append(XM)
            mutated = 0

    return X_daughters