def fg(x, gx):
    legradient = grad_dt(x)
    gx[0:size] = legradient[0:size]
    gx[size:2 * size] = legradient[size:2 * size]
    return phi(x)    
    
###################### FONCTION DE DEFLOUTAGE D'IMAGE ########################

# On definit notre premier point x (ici l'image floue et un kernel quelconque)
x = np.concatenate((image, psf), axis=0)
g = np.zeros(2*size)
f = np.array([fg(x,g)], dtype="double")
print "f initial = ", f
# On execute la fonction de minimisation
x_out = opkpy_v3.opk_minimize(x, fg, g, algorithm="vmlmb", 
                              linesearch="cubic", vmlmb="lbfgs",
                              limited=0, maxeval=200, maxiter = 200)  
                            
                            
objet_defloute = x_out[0:size].reshape((NbLigne,NbColonne))
kernel_defloute = x_out[size:2*size].reshape((NbLigne,NbColonne))
image_out = np.real(np.fft.ifft(np.fft.fft(x_out[0:size]) * np.fft.fft(np.roll(x_out[size:2*size]/sum(x_out[size:2*size]),np.round((size+1)/2))))).reshape((NbLigne,NbColonne)) 

# objets
matshow(image_mat,cmap=cm.gray)          # point de depart
matshow(objet_mat,cmap=cm.gray)          # objectif
matshow(objet_defloute,cmap=cm.gray)     # resultat
# psf
matshow(psf_mat,cmap=cm.gray)
matshow(kernel_mat,cmap=cm.gray)
matshow(kernel_defloute,cmap=cm.gray)
示例#2
0
#                      nlcg="PolakRibierePolyak", limited=1)      
#print"PolakRibierePolyak :" + str(x_out) + "\n \n"
#x_out = opkpy_v3.opk_minimize(x, fg_Rosen, g, algorithm="nlcg", linesearch="nonmonotone",
#                      nlcg="Fletcher", limited=1)      
#print"Fletcher :" + str(x_out) + "\n \n"
#x_out = opkpy_v3.opk_minimize(x, fg_Rosen, g, algorithm="nlcg", linesearch="nonmonotone",
#                      nlcg="LiuStorey", limited=1)      
#print"LiuStorey :" + str(x_out) + "\n \n"
#x_out = opkpy_v3.opk_minimize(x, fg_Rosen, g, algorithm="nlcg", linesearch="nonmonotone",
#                      nlcg="DaiYuan", limited=1)      
#print"DaiYuan :" + str(x_out) + "\n \n"
#x_out = opkpy_v3.opk_minimize(x, fg_Rosen, g, algorithm="nlcg", linesearch="nonmonotone",
#                      nlcg="PerryShanno", limited=1)      
#print"PerryShanno :" + str(x_out) + "\n \n"

x_out = opkpy_v3.opk_minimize(x, fg_Rosen, g, algorithm="vmlmb", linesearch="nonmonotone",
                      nlcg="HagerZhang", limited=0)      
print("HagerZhang :" + str(x_out) + "\n \n")

##############################################################################


################################# PARAMETRES #################################
 
# x, f, g
# bl, bu  ---> only for vmlmb
###### algorithm
###### linesearch 
# autostep
###### nlcg    ---> only for nlcg
###### vmlmb   ---> only for vmlmb
# delta, epsilon