示例#1
0
文件: test.py 项目: kisate/schraer
def test_mult():
    print(mult([to_perm([1,2]), to_perm([1,2])]))
    print(Permutation([]))
    print(mult([to_perm([1,2]), to_perm([1,2])]) == Permutation([]))
    print(mult([to_perm([1,2]), to_perm([1,3])]))
    print(mult([to_perm([1,3]), to_perm([1,2])]))
    print(mult([to_perm([]), to_perm([1,2])]))
示例#2
0
文件: chain.py 项目: kisate/schraer
def check_belongs(chain: FullStabilizerChain, val: Permutation, step=0):

    if (step == len(chain.trees)):
        return (val == Permutation([]), [])

    b = chain.base[step]

    u = apply(val, [b])[0]

    if u not in chain.trees[step].orbit:
        return (False, [])

    node = chain.trees[step].node_dict[u]

    new_val = val

    cert = []

    while u != b:

        new_val = mult([node.perm, new_val])
        u = apply(node.perm, [u])[0]

        cert.append(inverse(node.perm))

        node = node.parent

    res = check_belongs(chain, new_val, step + 1)

    cert.extend(res[1])

    return (res[0], cert)
示例#3
0
 def bprop(self):
     logger.debug('%s backprop' % str(self))
     # FIXME Assuming just 1 successor for now
     assert len(self.succ) == 1
     succ_grad = self.succ[0].full_grad
     print self.W.shape
     self.full_grad = self.W.out.T * succ_grad
     # TODO Check this
     self.W.grad = mult(succ_grad, self.succ[0].out.T)
示例#4
0
文件: nodes.py 项目: xiamike/nn
 def bprop(self):
     logger.debug("%s backprop" % str(self))
     # FIXME Assuming just 1 successor for now
     assert len(self.succ) == 1
     succ_grad = self.succ[0].full_grad
     print self.W.shape
     self.full_grad = self.W.out.T * succ_grad
     # TODO Check this
     self.W.grad = mult(succ_grad, self.succ[0].out.T)
示例#5
0
文件: tree.py 项目: kisate/schraer
    def get_h_u(self, u):

        assert(u in self.orbit)

        h = Permutation([])
        node = self.node_dict[u]
        while node.val != self.root.val:
            h = mult([node.perm, h])
            node = node.parent
        
        return inverse(h)
示例#6
0
文件: chain.py 项目: kisate/schraer
def make_gens(tree: Tree, S: Iterable[Permutation]):
    newS = set()

    for s in S:
        for u in tree.orbit:
            hu = tree.get_h_u(u)
            hsu = tree.get_h_u(apply(s, [u])[0])
            newp = mult([inverse(hsu), s, hu])
            if newp not in newS:
                newS.add(newp)
        # print(len(newS))

    return newS
示例#7
0
    def bprop(self):
        logger.debug('%s backprop' % str(self))
        # FIXME Assuming just 1 successor for now
        assert len(self.succ) == 1
        succ_grad = self.succ[0].full_grad

        # FIXME Hack to avoid large sparse matrix multiply
        if type(self.succ[0]) is SumNode:  # Which leads to softmax...
            if self.full_grad is None:
                self.full_grad = empty((self.W.shape[1], succ_grad.shape[1]))
                self.W.grad = empty(self.W.shape)

            for k in range(self.full_grad.shape[0]):
                # TODO self.full_grad[k, :] = ?
                # TODO self.W.grad[k, :] = ?
                pass
        else:
            self.full_grad = mult(self.W.out.T, succ_grad)
            # FIXME Multiplication below is wrong
            self.W.grad = mult(succ_grad, self.succ[0].out.T)

        # TODO Check this
        self.b.grad = succ_grad
示例#8
0
文件: nodes.py 项目: xiamike/nn
    def bprop(self):
        logger.debug("%s backprop" % str(self))
        # FIXME Assuming just 1 successor for now
        assert len(self.succ) == 1
        succ_grad = self.succ[0].full_grad

        # FIXME Hack to avoid large sparse matrix multiply
        if type(self.succ[0]) is SumNode:  # Which leads to softmax...
            if self.full_grad is None:
                self.full_grad = empty((self.W.shape[1], succ_grad.shape[1]))
                self.W.grad = empty(self.W.shape)

            for k in range(self.full_grad.shape[0]):
                # TODO self.full_grad[k, :] = ?
                # TODO self.W.grad[k, :] = ?
                pass
        else:
            self.full_grad = mult(self.W.out.T, succ_grad)
            # FIXME Multiplication below is wrong
            self.W.grad = mult(succ_grad, self.succ[0].out.T)

        # TODO Check this
        self.b.grad = succ_grad
示例#9
0
文件: chain.py 项目: kisate/schraer
def normalize(S: Iterable[Permutation]):
    newS = set()

    n = max(S, key=lambda x: x.n).n

    base = [{} for _ in range(n)]

    for s in S:
        for x in range(1, n + 1):
            u = apply(s, [x])[0]
            if u != x:
                if u in base[x - 1]:
                    s = mult([inverse(s), base[x - 1][u]])
                else:
                    base[x - 1][u] = s
                    if s not in newS:
                        newS.add(s)
                    break
        # print(len(newS))

    return newS
示例#10
0
def test_mult():
    print("a testar a multiplicação")

    a = float(random.random() * 100)
    b = float(random.random() * 100)

    if a < b:
        temp = a
        a = b
        b = temp

    assert (mult(a, a) == a * a and mult(a, a) > 0)
    assert (mult(a, b) == a * b and mult(a, b) > 0)
    assert (mult(a, -a) == -a * a and mult(a, -a) < 0)
    assert (mult(a, -b) == -b * a and mult(a, -b) < 0)

    assert (mult(b, a) == b * a and mult(b, a) > 0)
    assert (mult(b, b) == b * b and mult(b, b) > 0)
    assert (mult(b, -a) == b * -a and mult(b, -a) < 0)
    assert (mult(b, -b) == -b * b and mult(b, -b) < 0)

    assert (mult(-a, a) == -a * a and mult(-a, a) < 0)
    assert (mult(-a, b) == -a * b and mult(-a, b) < 0)
    assert (mult(-a, -a) == a * a and mult(-a, -a) > 0)
    assert (mult(-a, -b) == a * b and mult(-a, -b) > 0)

    assert (mult(-b, a) == -b * a and mult(-b, a) < 0)
    assert (mult(-b, b) == -b * b and mult(-b, b) < 0)
    assert (mult(-b, -a) == a * b and mult(-b, -a) > 0)
    assert (mult(-b, -b) == b * b and mult(-b, -b) > 0)

    assert mult(a, 0) == 0
    assert mult(b, 0) == 0
    assert mult(-a, 0) == 0
    assert mult(-b, 0) == 0
    assert mult(0, a) == 0
    assert mult(0, b) == 0
    assert mult(0, -a) == 0
    assert mult(0, -b) == 0

    assert mult(a, 1) == a
    assert mult(b, 1) == b
    assert mult(-a, 1) == -a
    assert mult(-b, 1) == -b
    assert mult(1, a) == a
    assert mult(1, b) == b
    assert mult(1, -a) == -a
    assert mult(1, -b) == -b
示例#11
0
 def fprop(self):
     logger.debug('%s prop: %s x %s + %s' % (str(self), str(
         self.W.shape), str(self.x.out.shape), str(self.b.out.shape)))
     self.out = mult(self.W.out, self.x.out) + self.b.out
示例#12
0
 def fprop(self):
     self.out = mult(self.W.out, self.x.out)
示例#13
0
文件: rnn.py 项目: comadan/nn
    def cost_and_grad(self, data, labels, back=True, prev_h0=None):
        hps = self.hps
        T = data.shape[1]
        bsize = data.shape[2]

        # FIXME gnumpy reallocates if try and use same parameters?
        #us = self.us[:, 0:T, 0:bsize]
        #dus = self.dus[:, 0:T, 0:bsize]
        #hs = self.hs[:, 0:T, 0:bsize]
        #dhs = self.dhs[:, 0:T, 0:bsize]
        #probs = self.probs[:, 0:T, 0:bsize]
        #dprobs = self.dprobs[:, 0:T, 0:bsize]
        #costs = self.costs[0:T, 0:bsize]

        us = list()
        dus = list()
        hs = list()
        dhs = list()
        h0 = list()
        for k in xrange(hps.hidden_layers):
            us.append(list())
            dus.append(list())
            hs.append(list())
            dhs.append(list())
            h0.append(empty((hps.hidden_size, bsize)))
            for t in xrange(T):
                us[k].append(zeros((hps.hidden_size, bsize)))
                dus[k].append(zeros((hps.hidden_size, bsize)))
                hs[k].append(zeros((hps.hidden_size, bsize)))
                dhs[k].append(zeros((hps.hidden_size, bsize)))
        probs = list()
        for t in xrange(T):
            probs.append(zeros((hps.output_size, bsize)))
        costs = np.zeros((T, bsize))
        if prev_h0 is not None:
            h0 = prev_h0
        else:
            for k in xrange(hps.hidden_layers):
                h0[k] = tile(self.params['h0'][:, k].reshape(-1, 1), bsize)
        bih = self.params['bih']
        Wih = self.params['Wih']
        Whh = self.params['Whh']
        bhh = self.params['bhh']
        Who = self.params['Who']
        bho = self.params['bho']

        # Forward prop

        for t in xrange(T):
            for k in xrange(hps.hidden_layers):
                if t == 0:
                    hprev = h0[k]
                else:
                    hprev = hs[k][t-1]

                if k == 0:
                    us[k][t] = mult(Wih, data[:, t, :]) + bih
                else:
                    us[k][t] = mult(self.params['Wh%d' % k], hs[k-1][t])

                if k == hps.recurrent_layer - 1:
                    us[k][t] += mult(Whh, hprev) + bhh
                    # Clip maximum activation
                    mask = us[k][t] < hps.max_act
                    us[k][t] = us[k][t] * mask + hps.max_act * (1 - mask)
                elif k != 0:
                    us[k][t] += self.params['bh%d' % k]

                hs[k][t] = self.nl(us[k][t])

            probs[t] = softmax(mult(Who, hs[-1][t]) + bho)

        self.last_h = list()
        for k in xrange(hps.hidden_layers):
            self.last_h.append(hs[k][-1])

        if labels is None:
            return None, probs

        probs_neg_log = list()
        dprobs = list()
        for t in xrange(T):
            probs_neg_log.append(as_np(-1 * log(probs[t])))
            dprobs.append(as_np(probs[t].copy()))
        for k in xrange(bsize):
            for t in xrange(len(labels[k])):
                costs[t, k] = probs_neg_log[t][labels[k][t], k]
                dprobs[t][labels[k][t], k] -= 1
        for t in xrange(T):
            dprobs[t] = array(dprobs[t])

        # NOTE Summing costs over time
        # NOTE FIXME Dividing by T to get better sense if objective
        # is decreasing, remove for grad checking
        cost = costs.sum() / bsize / float(T)
        if not back:
            return cost, probs

        # Backprop

        for k in self.grads:
            self.grads[k][:] = 0

        for t in reversed(xrange(T)):
            self.grads['bho'] += dprobs[t][:, :].sum(axis=-1).reshape((-1, 1)) / bsize
            self.grads['Who'] += mult(dprobs[t], hs[-1][t].T) / bsize

            for k in reversed(xrange(hps.hidden_layers)):
                if k == hps.hidden_layers - 1:
                    dhs[k][t] += mult(Who.T, dprobs[t])
                else:
                    dhs[k][t] += mult(self.params['Wh%d' % (k+1)].T, dhs[k+1][t])
                dus[k][t] += get_nl_grad(self.hps.nl, us[k][t]) * dhs[k][t]

                if k > 0:
                    self.grads['Wh%d' % k] += mult(dus[k][t], hs[k-1][t].T) / bsize
                    self.grads['bh%d' % k] += dus[k][t].sum(axis=-1).reshape((-1, 1)) / bsize

                if k == hps.recurrent_layer - 1:
                    if t == 0:
                        hprev = h0[k]
                        self.grads['h0'][:, k] = mult(Whh.T, dus[k][t]).sum(axis=-1) / bsize
                    else:
                        hprev = hs[k][t-1]
                        dhs[k][t-1] = mult(Whh.T, dus[k][t])
                    self.grads['Whh'] += mult(dus[k][t], hprev.T) / bsize
                    self.grads['bhh'] += dus[k][t].sum(axis=-1).reshape((-1, 1)) / bsize

            self.grads['Wih'] += mult(dus[0][t], data[:, t, :].T) / bsize
            self.grads['bih'] += dus[0][t].sum(axis=-1).reshape((-1, 1)) / bsize

        return cost, self.grads
示例#14
0
文件: rnn.py 项目: runngezhang/nn-1
    def cost_and_grad(self, data, labels, back=True, prev_h0=None):
        hps = self.hps
        T = data.shape[1]
        bsize = data.shape[2]

        # FIXME gnumpy reallocates if try and use same parameters?
        #us = self.us[:, 0:T, 0:bsize]
        #dus = self.dus[:, 0:T, 0:bsize]
        #hs = self.hs[:, 0:T, 0:bsize]
        #dhs = self.dhs[:, 0:T, 0:bsize]
        #probs = self.probs[:, 0:T, 0:bsize]
        #dprobs = self.dprobs[:, 0:T, 0:bsize]
        #costs = self.costs[0:T, 0:bsize]

        us = list()
        dus = list()
        hs = list()
        dhs = list()
        h0 = list()
        for k in xrange(hps.hidden_layers):
            us.append(list())
            dus.append(list())
            hs.append(list())
            dhs.append(list())
            h0.append(empty((hps.hidden_size, bsize)))
            for t in xrange(T):
                us[k].append(zeros((hps.hidden_size, bsize)))
                dus[k].append(zeros((hps.hidden_size, bsize)))
                hs[k].append(zeros((hps.hidden_size, bsize)))
                dhs[k].append(zeros((hps.hidden_size, bsize)))
        probs = list()
        for t in xrange(T):
            probs.append(zeros((hps.output_size, bsize)))
        costs = np.zeros((T, bsize))
        if prev_h0 is not None:
            h0 = prev_h0
        else:
            for k in xrange(hps.hidden_layers):
                h0[k] = tile(self.params['h0'][:, k].reshape(-1, 1), bsize)
        bih = self.params['bih']
        Wih = self.params['Wih']
        Whh = self.params['Whh']
        bhh = self.params['bhh']
        Who = self.params['Who']
        bho = self.params['bho']

        # Forward prop

        for t in xrange(T):
            for k in xrange(hps.hidden_layers):
                if t == 0:
                    hprev = h0[k]
                else:
                    hprev = hs[k][t - 1]

                if k == 0:
                    us[k][t] = mult(Wih, data[:, t, :]) + bih
                else:
                    us[k][t] = mult(self.params['Wh%d' % k], hs[k - 1][t])

                if k == hps.recurrent_layer - 1:
                    us[k][t] += mult(Whh, hprev) + bhh
                    # Clip maximum activation
                    mask = us[k][t] < hps.max_act
                    us[k][t] = us[k][t] * mask + hps.max_act * (1 - mask)
                elif k != 0:
                    us[k][t] += self.params['bh%d' % k]

                hs[k][t] = self.nl(us[k][t])

            probs[t] = softmax(mult(Who, hs[-1][t]) + bho)

        self.last_h = list()
        for k in xrange(hps.hidden_layers):
            self.last_h.append(hs[k][-1])

        if labels is None:
            return None, probs

        probs_neg_log = list()
        dprobs = list()
        for t in xrange(T):
            probs_neg_log.append(as_np(-1 * log(probs[t])))
            dprobs.append(as_np(probs[t].copy()))
        for k in xrange(bsize):
            for t in xrange(len(labels[k])):
                costs[t, k] = probs_neg_log[t][labels[k][t], k]
                dprobs[t][labels[k][t], k] -= 1
        for t in xrange(T):
            dprobs[t] = array(dprobs[t])

        # NOTE Summing costs over time
        # NOTE FIXME Dividing by T to get better sense if objective
        # is decreasing, remove for grad checking
        cost = costs.sum() / bsize / float(T)
        if not back:
            return cost, probs

        # Backprop

        for k in self.grads:
            self.grads[k][:] = 0

        for t in reversed(xrange(T)):
            self.grads['bho'] += dprobs[t][:, :].sum(axis=-1).reshape(
                (-1, 1)) / bsize
            self.grads['Who'] += mult(dprobs[t], hs[-1][t].T) / bsize

            for k in reversed(xrange(hps.hidden_layers)):
                if k == hps.hidden_layers - 1:
                    dhs[k][t] += mult(Who.T, dprobs[t])
                else:
                    dhs[k][t] += mult(self.params['Wh%d' % (k + 1)].T,
                                      dhs[k + 1][t])
                dus[k][t] += get_nl_grad(self.hps.nl, us[k][t]) * dhs[k][t]

                if k > 0:
                    self.grads['Wh%d' %
                               k] += mult(dus[k][t], hs[k - 1][t].T) / bsize
                    self.grads['bh%d' % k] += dus[k][t].sum(axis=-1).reshape(
                        (-1, 1)) / bsize

                if k == hps.recurrent_layer - 1:
                    if t == 0:
                        hprev = h0[k]
                        self.grads['h0'][:, k] = mult(
                            Whh.T, dus[k][t]).sum(axis=-1) / bsize
                    else:
                        hprev = hs[k][t - 1]
                        dhs[k][t - 1] = mult(Whh.T, dus[k][t])
                    self.grads['Whh'] += mult(dus[k][t], hprev.T) / bsize
                    self.grads['bhh'] += dus[k][t].sum(axis=-1).reshape(
                        (-1, 1)) / bsize

            self.grads['Wih'] += mult(dus[0][t], data[:, t, :].T) / bsize
            self.grads['bih'] += dus[0][t].sum(axis=-1).reshape(
                (-1, 1)) / bsize

        return cost, self.grads
示例#15
0
文件: dnn.py 项目: comadan/nn
    def cost_and_grad(self, data, labels, back=True):
        hps = self.hps
        grads = self.grads

        # May not be full batch size if at end of dataset
        bsize = data.shape[-1]

        p = ParamStruct(**self.params)

        # Forward prop

        acts = list()
        acts.append(self.nl(mult(p.Wih, data) + p.bih))

        for k in xrange(hps.hidden_layers - 1):
            W = self.params['W%d' % (k+1)]
            b = self.params['b%d' % (k+1)]
            acts.append(self.nl(mult(W, acts[-1]) + b))

        y = mult(p.Who, acts[-1]) + p.bho
        probs = softmax(y)

        if labels is None:
            return None, probs

        # NOTE For more precision if necessary convert to nparray early
        cost_array = np.empty(bsize, dtype=np.float64)
        # Speed things up by doing assignments off gpu
        neg_log_prob = -1 * np.log(as_np(probs))
        for k in xrange(bsize):
            cost_array[k] = neg_log_prob[labels[k], k]
        cost = cost_array.sum() / bsize

        if not back:
            return cost, probs

        # Backprop

        for k in self.grads:
            self.grads[k][:] = 0

        # Do assignments off GPU to speed things up
        dLdy = as_np(probs)
        # NOTE This changes probs
        for k in xrange(bsize):
            dLdy[labels[k], k] -= 1
        dLdy = array(dLdy)

        grads['bho'] = dLdy.sum(axis=1).reshape((-1, 1))
        grads['Who'] = mult(dLdy, acts[-1].T)
        Ws = [p.Wih] + [self.params['W%d' % (k+1)] for k in xrange(hps.hidden_layers - 1)] + [p.Who]
        deltas = [dLdy]

        for k in reversed(xrange(hps.hidden_layers - 1)):
            delta = get_nl_grad(self.hps.nl, acts[k+1]) * mult(Ws[k + 2].T, deltas[-1])
            deltas.append(delta)
            grads['b%d' % (k+1)] = delta.sum(axis=1).reshape((-1, 1))
            grads['W%d' % (k+1)] = mult(delta, acts[k].T)

        delta = get_nl_grad(self.hps.nl, acts[0]) * mult(Ws[1].T, deltas[-1])
        grads['bih'] = delta.sum(axis=1).reshape((-1, 1))
        grads['Wih'] = mult(delta, data.T)

        # Normalize
        for k in self.grads:
            self.grads[k] /= bsize

        return cost, self.grads
示例#16
0
    def cost_and_grad(self, data, labels, back=True):
        hps = self.hps
        grads = self.grads

        # May not be full batch size if at end of dataset
        bsize = data.shape[-1]

        p = ParamStruct(**self.params)

        # Forward prop

        acts = list()
        acts.append(self.nl(mult(p.Wih, data) + p.bih))

        for k in xrange(hps.hidden_layers - 1):
            W = self.params['W%d' % (k + 1)]
            b = self.params['b%d' % (k + 1)]
            acts.append(self.nl(mult(W, acts[-1]) + b))

        y = mult(p.Who, acts[-1]) + p.bho
        probs = softmax(y)

        if labels is None:
            return None, probs

        # NOTE For more precision if necessary convert to nparray early
        cost_array = np.empty(bsize, dtype=np.float64)
        # Speed things up by doing assignments off gpu
        neg_log_prob = -1 * np.log(as_np(probs))
        for k in xrange(bsize):
            cost_array[k] = neg_log_prob[labels[k], k]
        cost = cost_array.sum() / bsize

        if not back:
            return cost, probs

        # Backprop

        for k in self.grads:
            self.grads[k][:] = 0

        # Do assignments off GPU to speed things up
        dLdy = as_np(probs)
        # NOTE This changes probs
        for k in xrange(bsize):
            dLdy[labels[k], k] -= 1
        dLdy = array(dLdy)

        grads['bho'] = dLdy.sum(axis=1).reshape((-1, 1))
        grads['Who'] = mult(dLdy, acts[-1].T)
        Ws = [p.Wih] + [
            self.params['W%d' % (k + 1)] for k in xrange(hps.hidden_layers - 1)
        ] + [p.Who]
        deltas = [dLdy]

        for k in reversed(xrange(hps.hidden_layers - 1)):
            delta = get_nl_grad(self.hps.nl, acts[k + 1]) * mult(
                Ws[k + 2].T, deltas[-1])
            deltas.append(delta)
            grads['b%d' % (k + 1)] = delta.sum(axis=1).reshape((-1, 1))
            grads['W%d' % (k + 1)] = mult(delta, acts[k].T)

        delta = get_nl_grad(self.hps.nl, acts[0]) * mult(Ws[1].T, deltas[-1])
        grads['bih'] = delta.sum(axis=1).reshape((-1, 1))
        grads['Wih'] = mult(delta, data.T)

        # Normalize
        for k in self.grads:
            self.grads[k] /= bsize

        return cost, self.grads
示例#17
0
文件: nodes.py 项目: xiamike/nn
 def fprop(self):
     self.out = mult(self.W.out, self.x.out)
示例#18
0
文件: nodes.py 项目: xiamike/nn
 def fprop(self):
     logger.debug(
         "%s prop: %s x %s + %s" % (str(self), str(self.W.shape), str(self.x.out.shape), str(self.b.out.shape))
     )
     self.out = mult(self.W.out, self.x.out) + self.b.out