示例#1
0
async def _get_formatted_image(filename, timesteps, out_size):
    img = cv2.imread(filename)
    s = img.shape[1]
    c = img.shape[2]
    # truncate height
    img = img[:timesteps * s, :, :]
    if out_size:
        img = resize(img, (timesteps * out_size[0], out_size[1]))
    imgs = img.reshape([timesteps, out_size[0], out_size[1], c])
    return ops.transform(imgs)
示例#2
0
    def _build_train_tower(self, inputs, batch_size=None, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()

        X, Z, E = inputs
        X = ops.transform(X)

        print(X.name, X.get_shape())
        print(Z.name, Z.get_shape())

        self._image_summary("Inputs", X)

        L = self._encoder(X, None, True, reuse)
        G = self._generator(Z, None, True, reuse)
        X_hat = self._generator(L, None, True, True)
        Z_hat = self._encoder(G, None, True, True)
        D_ = self._discriminator(G, Z, None, True, reuse)
        D = self._discriminator(X, L, None, True, True)

        self._image_summary("G", G)
        self._image_summary("X_hat", X_hat)
        tf.summary.histogram('D_', D_)
        tf.summary.histogram('D', D)
        tf.summary.scalar('D', tf.reduce_mean(D))
        tf.summary.scalar('D_', tf.reduce_mean(D_))
        tf.summary.scalar('sum_D', tf.reduce_mean(D + D_))
        tf.summary.scalar('sig_D', tf.reduce_mean(tf.nn.sigmoid(D)))
        tf.summary.scalar('sig_D_', tf.reduce_mean(tf.nn.sigmoid(D_)))

        with tf.name_scope('sampler'):
            g = self._generator(Z, None, False, True)
            l = self._encoder(X, None, False, True)
            x_recon = self._generator(l, None, False, True)
            d = self._discriminator(X, l, None, False, True)

        outputs = [g, x_recon, l, d]

        d_loss, g_loss, e_loss = self._calculate_losses(
            X, Z, L, G, X_hat, Z_hat, D_, D, E)

        t_vars = tf.trainable_variables()
        d_vars = [var for var in t_vars if 'Discriminator' in var.name]
        g_vars = [var for var in t_vars if 'Generator' in var.name]
        e_vars = [var for var in t_vars if 'Encoder' in var.name]

        with tf.name_scope('Grad_compute'):
            d_grads = self.opt.compute_gradients(d_loss, var_list=d_vars)
            g_grads = self.opt.compute_gradients(g_loss, var_list=g_vars)
            e_grads = self.opt.compute_gradients(e_loss, var_list=e_vars)

        return outputs, [d_loss, g_loss, e_loss], [d_grads, g_grads, e_grads]
示例#3
0
    def _setup_config(self, config):
        self.ext = config['ext']
        self.s = config['s']
        self.c = config['c']
        self.lvls = config['lvls']
        self.kernel_size = config['kernel_size']
        self.z_len = config['z_len']
        self.gf_dim = config['gf_dim']
        self.df_dim = config['df_dim']
        self.sampler_interpolations = config['interpolations']
        self.sampler_batch_size = config['sampler_batch_size']
        self.activation_fn = config['activation_fn']
        self.out_activation_fn = config['out_activation_fn']
        d_bn = config['d_bn']
        g_bn = config['g_bn']
        self.lr = config['lr']
        self.optimizer = config['optimizer']
        self.loss = config['loss']
        self.grad_pen = config['grad_pen']
        self.ae_pen = config['ae_pen']
        self.gp_lambda = config['gp_lambda']
        self.ae_lambda = config['ae_lambda']
        self.add_image_summary = config['add_image_summary']

        if self.optimizer is 'adam':
            self.opt = tf.train.AdamOptimizer(learning_rate=self.lr,
                                              beta1=0.5,
                                              beta2=0.9)
        elif self.optimizer is 'rms':
            self.opt = tf.train.RMSPropOptimizer(learning_rate=self.lr)

        self.d_bn_fn = layers.batch_norm if d_bn else None
        self.g_bn_fn = layers.batch_norm if g_bn else None
        self.comments = None

        try:
            # Add mean image:
            img = cv2.imread(
                os.path.join(self.data_dir, 'mean.{}'.format(self.ext)))
            mean_img = np.array(img.resize([self.s, self.s]))
            self.mean_img = tf.constant(ops.transform(mean_img), tf.float32,
                                        [1, self.s, self.s, 3])
        except:
            pass