示例#1
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))

    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    configure_logger(model_args, training_args)

    # Downloading and loading a dataset from the hub.
    datasets = load_dataset(data_args.dataset_name,
                            data_args.dataset_config_name,
                            cache_dir=model_args.cache_dir)

    if "validation" not in datasets.keys():
        # make sure only "validation" and "train" keys remain"
        datasets = DatasetDict()
        datasets["validation"] = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            split=
            f"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]",
            cache_dir=model_args.cache_dir,
        )
        datasets["train"] = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            split=
            f"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]",
            cache_dir=model_args.cache_dir,
        )
    else:
        # make sure only "validation" and "train" keys remain"
        datasets = DatasetDict()
        datasets["validation"] = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            split="validation",
            cache_dir=model_args.cache_dir,
        )
        datasets["train"] = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            split=f"{data_args.train_split_name}",
            cache_dir=model_args.cache_dir,
        )

    # only normalized-inputs-training is supported
    feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        do_normalize=True)

    def prepare_dataset(batch):
        # check that all files have the correct sampling rate
        batch["speech"], _ = librosa.load(batch[data_args.speech_file_column],
                                          sr=feature_extractor.sampling_rate)
        return batch

    # load audio files into numpy arrays
    vectorized_datasets = datasets.map(
        prepare_dataset,
        num_proc=data_args.preprocessing_num_workers,
        remove_columns=datasets["train"].column_names)

    # filter audio files that are too long
    vectorized_datasets = vectorized_datasets.filter(lambda data: len(data[
        "speech"]) < int(data_args.max_duration_in_seconds * feature_extractor.
                         sampling_rate))

    def normalize(batch):
        return feature_extractor(batch["speech"],
                                 sampling_rate=feature_extractor.sampling_rate)

    # normalize and transform to `BatchFeatures`
    vectorized_datasets = vectorized_datasets.map(
        normalize,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
        remove_columns=vectorized_datasets["train"].column_names,
    )

    # pretraining is only supported for "newer" stable layer norm architecture
    # apply_spec_augment has to be True, mask_feature_prob has to be 0.0
    config = Wav2Vec2Config.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        gradient_checkpointing=model_args.gradient_checkpointing,
    )

    if not config.do_stable_layer_norm or config.feat_extract_norm != "layer":
        raise ValueError(
            "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and ``config.feat_extract_norm='layer'"
        )

    model = FlaxWav2Vec2ForPreTraining(config,
                                       seed=training_args.seed,
                                       dtype=getattr(jnp, model_args.dtype))

    data_collator = FlaxDataCollatorForWav2Vec2Pretraining(
        model=model,
        feature_extractor=feature_extractor,
        pad_to_multiple_of=data_args.pad_to_multiple_of)

    # Enable tensorboard only on the master node
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(
                log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable.")

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    dropout_rngs = jax.random.split(rng, jax.local_device_count())
    gumbel_rngs = jax.random.split(rng, jax.local_device_count())

    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(
        training_args.per_device_train_batch_size) * jax.device_count()
    eval_batch_size = int(
        training_args.per_device_eval_batch_size) * jax.device_count()

    num_train_steps = len(
        vectorized_datasets["train"]) // train_batch_size * num_epochs

    # Create learning rate schedule
    warmup_fn = optax.linear_schedule(
        init_value=0.0,
        end_value=training_args.learning_rate,
        transition_steps=training_args.warmup_steps)
    decay_fn = optax.linear_schedule(
        init_value=training_args.learning_rate,
        end_value=0,
        transition_steps=num_train_steps - training_args.warmup_steps,
    )
    linear_decay_lr_schedule_fn = optax.join_schedules(
        schedules=[warmup_fn, decay_fn],
        boundaries=[training_args.warmup_steps])

    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
        flat_mask = {
            path: (path[-1] != "bias"
                   and path[-2:] not in [("layer_norm", "scale"),
                                         ("final_layer_norm", "scale")])
            for path in flat_params
        }
        return traverse_util.unflatten_dict(flat_mask)

    # create adam optimizer
    adamw = optax.adamw(
        learning_rate=linear_decay_lr_schedule_fn,
        b1=training_args.adam_beta1,
        b2=training_args.adam_beta2,
        eps=training_args.adam_epsilon,
        weight_decay=training_args.weight_decay,
        mask=decay_mask_fn,
    )

    # Setup train state and define training hyper-parameters
    state = train_state.TrainState.create(apply_fn=model.__call__,
                                          params=model.params,
                                          tx=adamw)
    num_negatives = model.config.num_negatives
    contrastive_logits_temperature = model.config.contrastive_logits_temperature
    num_codevectors = model.config.num_codevectors_per_group * model.config.num_codevector_groups
    diversity_loss_weight = model.config.diversity_loss_weight

    # Define gradient update step fn
    def train_step(state, batch, dropout_rng, gumbel_rng):
        dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
        gumbel_rng, new_gumbel_rng = jax.random.split(gumbel_rng)

        def loss_fn(params):
            negative_indices = batch.pop("sampled_negative_indices")

            gumbel_temperature = jnp.clip(
                model_args.max_gumbel_temperature *
                model_args.gumbel_temperature_decay**state.step,
                a_min=model_args.min_gumbel_temperature,
            )

            outputs = state.apply_fn(
                **batch,
                gumbel_temperature=gumbel_temperature,
                params=params,
                dropout_rng=dropout_rng,
                gumbel_rng=gumbel_rng,
                train=True,
            )

            contrastive_loss = compute_contrastive_loss(
                outputs.projected_quantized_states,
                outputs.projected_states,
                negative_indices,
                batch["mask_time_indices"],
                contrastive_logits_temperature,
                num_negatives,
            )

            diversity_loss = (num_codevectors -
                              outputs.codevector_perplexity) / num_codevectors
            loss = contrastive_loss + diversity_loss_weight * diversity_loss

            return loss

        grad_fn = jax.value_and_grad(loss_fn)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")
        new_state = state.apply_gradients(grads=grad)

        metrics = jax.lax.pmean(
            {
                "loss": loss,
                "learning_rate": linear_decay_lr_schedule_fn(state.step)
            },
            axis_name="batch")

        return new_state, metrics, new_dropout_rng, new_gumbel_rng

    # Create parallel version of the train step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0, ))

    # Define eval fn
    def eval_step(params, batch):
        negative_indices = batch.pop("sampled_negative_indices")

        outputs = model(**batch, params=params, train=False)

        contrastive_loss = compute_contrastive_loss(
            outputs.projected_quantized_states,
            outputs.projected_states,
            negative_indices,
            batch["mask_time_indices"],
            contrastive_logits_temperature,
            num_negatives,
        )

        diversity_loss = (num_codevectors -
                          outputs.codevector_perplexity) / num_codevectors
        loss = contrastive_loss + diversity_loss_weight * diversity_loss

        # summarize metrics
        metrics = {
            "loss": loss.mean(),
            "codevector_perplexity": outputs.codevector_perplexity
        }
        metrics = jax.lax.pmean(metrics, axis_name="batch")

        return metrics

    p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0, ))

    # Replicate the train state on each device
    state = jax_utils.replicate(state)

    train_time = 0
    train_metrics = []
    epochs = tqdm(range(num_epochs),
                  desc=f"Epoch ... (1/{num_epochs})",
                  position=0)
    for epoch in epochs:
        # ======================== Training ================================
        train_start = time.time()

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)

        # Generate an epoch by shuffling sampling indices from the train dataset
        num_train_samples = len(vectorized_datasets["train"])
        train_samples_idx = jax.random.permutation(
            input_rng, jnp.arange(num_train_samples))
        train_batch_idx = generate_batch_splits(train_samples_idx,
                                                train_batch_size)

        # Gather the indexes for creating the batch and do a training step
        for step, batch_idx in enumerate(
                tqdm(train_batch_idx, desc="Training...", position=1)):
            samples = [
                vectorized_datasets["train"][int(idx)] for idx in batch_idx
            ]
            model_inputs = data_collator(samples)
            model_inputs = shard(model_inputs.data)

            # Model forward
            state, train_metric, dropout_rngs, gumbel_rngs = p_train_step(
                state, model_inputs, dropout_rngs, gumbel_rngs)
            train_metrics.append(train_metric)

            cur_step = epoch * (num_train_samples // train_batch_size) + step

            if cur_step % training_args.logging_steps == 0 and cur_step > 0:
                # Save metrics
                train_metric = jax_utils.unreplicate(train_metric)
                train_time += time.time() - train_start
                if has_tensorboard and jax.process_index() == 0:
                    write_train_metric(summary_writer, train_metrics,
                                       train_time, cur_step)

                epochs.write(
                    f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})"
                )

                train_metrics = []

        # ======================== Evaluating ==============================
        num_eval_samples = len(vectorized_datasets["validation"])
        eval_samples_idx = jnp.arange(num_eval_samples)
        eval_batch_idx = generate_batch_splits(eval_samples_idx,
                                               eval_batch_size)

        eval_metrics = []
        for i, batch_idx in enumerate(
                tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
            samples = [
                vectorized_datasets["validation"][int(idx)]
                for idx in batch_idx
            ]
            model_inputs = data_collator(samples)

            # Model forward
            model_inputs = shard(model_inputs.data)
            metrics = p_eval_step(state.params, model_inputs)
            eval_metrics.append(metrics)

        # get eval metrics
        eval_metrics = get_metrics(eval_metrics)
        eval_metrics = jax.tree_map(jnp.mean, eval_metrics)

        # Update progress bar
        epochs.write(
            f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {eval_metrics['loss']}, Perplexity: {eval_metrics['codevector_perplexity']})"
        )

        # Save metrics
        if has_tensorboard and jax.process_index() == 0:
            cur_step = epoch * (len(vectorized_datasets["train"]) //
                                train_batch_size)
            write_eval_metric(summary_writer, eval_metrics, cur_step)

        # save checkpoint after each epoch and push checkpoint to the hub
        if jax.process_index() == 0:
            params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
            model.save_pretrained(training_args.output_dir,
                                  params=params,
                                  push_to_hub=training_args.push_to_hub)
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    if (os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome.")

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() ==
                    0 else logging.ERROR)
    if jax.process_index() == 0:
        transformers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

    # set seed for random transforms and torch dataloaders
    set_seed(training_args.seed)

    # Handle the repository creation
    if training_args.push_to_hub:
        if training_args.hub_model_id is None:
            repo_name = get_full_repo_name(Path(
                training_args.output_dir).absolute().name,
                                           token=training_args.hub_token)
        else:
            repo_name = training_args.hub_model_id
        repo = Repository(training_args.output_dir, clone_from=repo_name)

    # Initialize datasets and pre-processing transforms
    # We use torchvision here for faster pre-processing
    # Note that here we are using some default pre-processing, for maximum accuray
    # one should tune this part and carefully select what transformations to use.
    normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
    train_dataset = torchvision.datasets.ImageFolder(
        data_args.train_dir,
        transforms.Compose([
            transforms.RandomResizedCrop(data_args.image_size),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
        ]),
    )

    eval_dataset = torchvision.datasets.ImageFolder(
        data_args.validation_dir,
        transforms.Compose([
            transforms.Resize(data_args.image_size),
            transforms.CenterCrop(data_args.image_size),
            transforms.ToTensor(),
            normalize,
        ]),
    )

    # Load pretrained model and tokenizer
    if model_args.config_name:
        config = AutoConfig.from_pretrained(
            model_args.config_name,
            num_labels=len(train_dataset.classes),
            image_size=data_args.image_size,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(
            model_args.model_name_or_path,
            num_labels=len(train_dataset.classes),
            image_size=data_args.image_size,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    if model_args.model_name_or_path:
        model = FlaxAutoModelForImageClassification.from_pretrained(
            model_args.model_name_or_path,
            config=config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        model = FlaxAutoModelForImageClassification.from_config(
            config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
            use_auth_token=True if model_args.use_auth_token else None,
        )

    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(
        training_args.per_device_train_batch_size) * jax.device_count()
    eval_batch_size = int(
        training_args.per_device_eval_batch_size) * jax.device_count()
    steps_per_epoch = len(train_dataset) // train_batch_size
    total_train_steps = steps_per_epoch * num_epochs

    def collate_fn(examples):
        pixel_values = torch.stack([example[0] for example in examples])
        labels = torch.tensor([example[1] for example in examples])

        batch = {"pixel_values": pixel_values, "labels": labels}
        batch = {k: v.numpy() for k, v in batch.items()}

        return batch

    # Create data loaders
    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=train_batch_size,
        shuffle=True,
        num_workers=data_args.preprocessing_num_workers,
        persistent_workers=True,
        drop_last=True,
        collate_fn=collate_fn,
    )

    eval_loader = torch.utils.data.DataLoader(
        eval_dataset,
        batch_size=eval_batch_size,
        shuffle=False,
        num_workers=data_args.preprocessing_num_workers,
        persistent_workers=True,
        drop_last=True,
        collate_fn=collate_fn,
    )

    # Enable tensorboard only on the master node
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(
                log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable.")

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    rng, dropout_rng = jax.random.split(rng)

    # Create learning rate schedule
    linear_decay_lr_schedule_fn = create_learning_rate_fn(
        len(train_dataset),
        train_batch_size,
        training_args.num_train_epochs,
        training_args.warmup_steps,
        training_args.learning_rate,
    )

    # create adam optimizer
    adamw = optax.adamw(
        learning_rate=linear_decay_lr_schedule_fn,
        b1=training_args.adam_beta1,
        b2=training_args.adam_beta2,
        eps=training_args.adam_epsilon,
        weight_decay=training_args.weight_decay,
    )

    # Setup train state
    state = TrainState.create(apply_fn=model.__call__,
                              params=model.params,
                              tx=adamw,
                              dropout_rng=dropout_rng)

    def loss_fn(logits, labels):
        loss = optax.softmax_cross_entropy(logits,
                                           onehot(labels, logits.shape[-1]))
        return loss.mean()

    # Define gradient update step fn
    def train_step(state, batch):
        dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)

        def compute_loss(params):
            labels = batch.pop("labels")
            logits = state.apply_fn(**batch,
                                    params=params,
                                    dropout_rng=dropout_rng,
                                    train=True)[0]
            loss = loss_fn(logits, labels)
            return loss

        grad_fn = jax.value_and_grad(compute_loss)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")

        new_state = state.apply_gradients(grads=grad,
                                          dropout_rng=new_dropout_rng)

        metrics = {
            "loss": loss,
            "learning_rate": linear_decay_lr_schedule_fn(state.step)
        }
        metrics = jax.lax.pmean(metrics, axis_name="batch")

        return new_state, metrics

    # Define eval fn
    def eval_step(params, batch):
        labels = batch.pop("labels")
        logits = model(**batch, params=params, train=False)[0]
        loss = loss_fn(logits, labels)

        # summarize metrics
        accuracy = (jnp.argmax(logits, axis=-1) == labels).mean()
        metrics = {"loss": loss, "accuracy": accuracy}
        metrics = jax.lax.pmean(metrics, axis_name="batch")
        return metrics

    # Create parallel version of the train and eval step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0, ))
    p_eval_step = jax.pmap(eval_step, "batch")

    # Replicate the train state on each device
    state = state.replicate()

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {num_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}"
    )
    logger.info(
        f"  Total train batch size (w. parallel & distributed) = {train_batch_size}"
    )
    logger.info(f"  Total optimization steps = {total_train_steps}")

    train_time = 0
    epochs = tqdm(range(num_epochs),
                  desc=f"Epoch ... (1/{num_epochs})",
                  position=0)
    for epoch in epochs:
        # ======================== Training ================================
        train_start = time.time()

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)
        train_metrics = []

        steps_per_epoch = len(train_dataset) // train_batch_size
        train_step_progress_bar = tqdm(total=steps_per_epoch,
                                       desc="Training...",
                                       position=1,
                                       leave=False)
        # train
        for batch in train_loader:
            batch = shard(batch)
            state, train_metric = p_train_step(state, batch)
            train_metrics.append(train_metric)

            train_step_progress_bar.update(1)

        train_time += time.time() - train_start

        train_metric = unreplicate(train_metric)

        train_step_progress_bar.close()
        epochs.write(
            f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
        )

        # ======================== Evaluating ==============================
        eval_metrics = []
        eval_steps = len(eval_dataset) // eval_batch_size
        eval_step_progress_bar = tqdm(total=eval_steps,
                                      desc="Evaluating...",
                                      position=2,
                                      leave=False)
        for batch in eval_loader:
            # Model forward
            batch = shard(batch)
            metrics = p_eval_step(state.params, batch)
            eval_metrics.append(metrics)

            eval_step_progress_bar.update(1)

        # normalize eval metrics
        eval_metrics = get_metrics(eval_metrics)
        eval_metrics = jax.tree_map(jnp.mean, eval_metrics)

        # Print metrics and update progress bar
        eval_step_progress_bar.close()
        desc = (
            f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {round(eval_metrics['loss'].item(), 4)} | "
            f"Eval Accuracy: {round(eval_metrics['accuracy'].item(), 4)})")
        epochs.write(desc)
        epochs.desc = desc

        # Save metrics
        if has_tensorboard and jax.process_index() == 0:
            cur_step = epoch * (len(train_dataset) // train_batch_size)
            write_metric(summary_writer, train_metrics, eval_metrics,
                         train_time, cur_step)

        # save checkpoint after each epoch and push checkpoint to the hub
        if jax.process_index() == 0:
            params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
            model.save_pretrained(training_args.output_dir, params=params)
            if training_args.push_to_hub:
                repo.push_to_hub(
                    commit_message=f"Saving weights and logs of epoch {epoch}",
                    blocking=False)
示例#3
0
def create_train_state(
    model: FlaxAutoModelForQuestionAnswering,
    learning_rate_fn: Callable[[int], float],
    num_labels: int,
    training_args: TrainingArguments,
) -> train_state.TrainState:
    """Create initial training state."""

    class TrainState(train_state.TrainState):
        """Train state with an Optax optimizer.

        The two functions below differ depending on whether the task is classification
        or regression.

        Args:
          logits_fn: Applied to last layer to obtain the logits.
          loss_fn: Function to compute the loss.
        """

        logits_fn: Callable = struct.field(pytree_node=False)
        loss_fn: Callable = struct.field(pytree_node=False)

    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
        # find out all LayerNorm parameters
        layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
        layer_norm_named_params = set(
            [
                layer[-2:]
                for layer_norm_name in layer_norm_candidates
                for layer in flat_params.keys()
                if layer_norm_name in "".join(layer).lower()
            ]
        )
        flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
        return traverse_util.unflatten_dict(flat_mask)

    tx = optax.adamw(
        learning_rate=learning_rate_fn,
        b1=training_args.adam_beta1,
        b2=training_args.adam_beta2,
        eps=training_args.adam_epsilon,
        weight_decay=training_args.weight_decay,
        mask=decay_mask_fn,
    )

    def cross_entropy_loss(logits, labels):
        start_loss = optax.softmax_cross_entropy(logits[0], onehot(labels[0], num_classes=num_labels))
        end_loss = optax.softmax_cross_entropy(logits[1], onehot(labels[1], num_classes=num_labels))
        xentropy = (start_loss + end_loss) / 2.0
        return jnp.mean(xentropy)

    return TrainState.create(
        apply_fn=model.__call__,
        params=model.params,
        tx=tx,
        logits_fn=lambda logits: logits,
        loss_fn=cross_entropy_loss,
    )
示例#4
0
    loss2 = (jnp.abs(mel1_hat - mels) + jnp.abs(mel2_hat - mels)) / 2
    loss = jnp.mean((loss1 + loss2) / 2, axis=-1)
    mask = jnp.arange(0, L)[None, :] < (inputs.wav_lengths //
                                        (FLAGS.n_fft // 4))[:, None]
    loss = jnp.sum(loss * mask) / jnp.sum(mask)
    return (loss, new_aux) if is_training else (loss, new_aux, mel2_hat, mels)


train_loss_fn = partial(loss_fn, is_training=True)
val_loss_fn = jax.jit(partial(loss_fn, is_training=False))

loss_vag = jax.value_and_grad(train_loss_fn, has_aux=True)

optimizer = optax.chain(
    optax.clip_by_global_norm(1.0),
    optax.adamw(FLAGS.learning_rate, weight_decay=FLAGS.weight_decay))


@jax.jit
def update(params, aux, rng, optim_state, inputs):
    rng, new_rng = jax.random.split(rng)
    (loss, new_aux), grads = loss_vag(params, aux, rng, inputs)
    updates, new_optim_state = optimizer.update(grads, optim_state, params)
    new_params = optax.apply_updates(updates, params)
    return loss, (new_params, new_aux, new_rng, new_optim_state)


def initial_state(batch):
    rng = jax.random.PRNGKey(42)
    params, aux = hk.transform_with_state(lambda x: AcousticModel(True)
                                          (x)).init(rng, batch)
示例#5
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    if (os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome.")

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        level=logging.INFO,
        datefmt="[%X]",
    )

    # Log on each process the small summary:
    logger = logging.getLogger(__name__)

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Handle the repository creation
    if training_args.push_to_hub:
        if training_args.hub_model_id is None:
            repo_name = get_full_repo_name(Path(
                training_args.output_dir).absolute().name,
                                           token=training_args.hub_token)
        else:
            repo_name = training_args.hub_model_id
        repo = Repository(training_args.output_dir, clone_from=repo_name)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(data_args.dataset_name,
                                data_args.dataset_config_name,
                                cache_dir=model_args.cache_dir)

        if "validation" not in datasets.keys():
            datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
            )
            datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
            )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
        datasets = load_dataset(extension,
                                data_files=data_files,
                                cache_dir=model_args.cache_dir)

        if "validation" not in datasets.keys():
            datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
            )
            datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
            )
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.tokenizer_name,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.config_name:
        config = T5Config.from_pretrained(model_args.config_name,
                                          cache_dir=model_args.cache_dir,
                                          vocab_size=len(tokenizer))
    elif model_args.model_name_or_path:
        config = T5Config.from_pretrained(model_args.model_name_or_path,
                                          cache_dir=model_args.cache_dir)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = datasets["train"].column_names
    else:
        column_names = datasets["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
    # Since we make sure that all sequences are of the same length, no attention_mask is needed.
    def tokenize_function(examples):
        return tokenizer(examples[text_column_name],
                         return_attention_mask=False)

    tokenized_datasets = datasets.map(
        tokenize_function,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        remove_columns=column_names,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    # T5-like span masked language modeling will fuse consecutively masked tokens to a single sentinel token.
    # To ensure that the input length is `max_seq_length`, we need to increase the maximum length
    # according to `mlm_probability` and `mean_noise_span_length`. We can also define the label length accordingly.
    expanded_inputs_length, targets_length = compute_input_and_target_lengths(
        inputs_length=max_seq_length,
        noise_density=data_args.mlm_probability,
        mean_noise_span_length=data_args.mean_noise_span_length,
    )

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of expanded_inputs_length.
    def group_texts(examples):
        # Concatenate all texts.
        concatenated_examples = {
            k: list(chain(*examples[k]))
            for k in examples.keys()
        }
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
        if total_length >= expanded_inputs_length:
            total_length = (total_length //
                            expanded_inputs_length) * expanded_inputs_length
        # Split by chunks of max_len.
        result = {
            k: [
                t[i:i + expanded_inputs_length]
                for i in range(0, total_length, expanded_inputs_length)
            ]
            for k, t in concatenated_examples.items()
        }
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
    # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
    # might be slower to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
    tokenized_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    # Enable tensorboard only on the master node
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(
                log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable.")

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    dropout_rngs = jax.random.split(rng, jax.local_device_count())

    if model_args.model_name_or_path:
        model = FlaxT5ForConditionalGeneration.from_pretrained(
            model_args.model_name_or_path,
            config=config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype))
    else:
        config.vocab_size = len(tokenizer)
        model = FlaxT5ForConditionalGeneration(config,
                                               seed=training_args.seed,
                                               dtype=getattr(
                                                   jnp, model_args.dtype))

    # Data collator
    # This one will take care of randomly masking the tokens.
    data_collator = FlaxDataCollatorForT5MLM(
        tokenizer=tokenizer,
        noise_density=data_args.mlm_probability,
        mean_noise_span_length=data_args.mean_noise_span_length,
        input_length=max_seq_length,
        target_length=targets_length,
        pad_token_id=model.config.pad_token_id,
        decoder_start_token_id=model.config.decoder_start_token_id,
    )

    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(
        training_args.per_device_train_batch_size) * jax.device_count()
    eval_batch_size = int(
        training_args.per_device_eval_batch_size) * jax.device_count()

    num_train_steps = len(
        tokenized_datasets["train"]) // train_batch_size * num_epochs

    # Create learning rate schedule
    warmup_fn = optax.linear_schedule(
        init_value=0.0,
        end_value=training_args.learning_rate,
        transition_steps=training_args.warmup_steps)
    decay_fn = optax.linear_schedule(
        init_value=training_args.learning_rate,
        end_value=0,
        transition_steps=num_train_steps - training_args.warmup_steps,
    )
    linear_decay_lr_schedule_fn = optax.join_schedules(
        schedules=[warmup_fn, decay_fn],
        boundaries=[training_args.warmup_steps])

    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
        flat_mask = {
            path: (path[-1] != "bias"
                   and path[-2:] not in [("layer_norm", "scale"),
                                         ("final_layer_norm", "scale")])
            for path in flat_params
        }
        return traverse_util.unflatten_dict(flat_mask)

    # create adam optimizer
    if training_args.adafactor:
        # We use the default parameters here to initialize adafactor,
        # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
        optimizer = optax.adafactor(
            learning_rate=linear_decay_lr_schedule_fn, )
    else:
        optimizer = optax.adamw(
            learning_rate=linear_decay_lr_schedule_fn,
            b1=training_args.adam_beta1,
            b2=training_args.adam_beta2,
            weight_decay=training_args.weight_decay,
            mask=decay_mask_fn,
        )

    # Setup train state
    state = train_state.TrainState.create(apply_fn=model.__call__,
                                          params=model.params,
                                          tx=optimizer)

    # Define gradient update step fn
    def train_step(state, batch, dropout_rng):
        dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)

        def loss_fn(params):
            labels = batch.pop("labels")

            logits = state.apply_fn(**batch,
                                    params=params,
                                    dropout_rng=dropout_rng,
                                    train=True)[0]

            # compute loss
            loss = optax.softmax_cross_entropy(
                logits, onehot(labels, logits.shape[-1])).mean()

            return loss

        grad_fn = jax.value_and_grad(loss_fn)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")
        new_state = state.apply_gradients(grads=grad)

        metrics = jax.lax.pmean(
            {
                "loss": loss,
                "learning_rate": linear_decay_lr_schedule_fn(state.step)
            },
            axis_name="batch")

        return new_state, metrics, new_dropout_rng

    # Create parallel version of the train step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0, ))

    # Define eval fn
    def eval_step(params, batch):
        labels = batch.pop("labels")

        logits = model(**batch, params=params, train=False)[0]

        # compute loss
        loss = optax.softmax_cross_entropy(logits,
                                           onehot(labels, logits.shape[-1]))

        # compute accuracy
        accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels)

        # summarize metrics
        metrics = {"loss": loss.mean(), "accuracy": accuracy.mean()}
        metrics = jax.lax.pmean(metrics, axis_name="batch")

        return metrics

    p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0, ))

    # Replicate the train state on each device
    state = jax_utils.replicate(state)

    train_time = 0
    epochs = tqdm(range(num_epochs), desc="Epoch ... ", position=0)
    for epoch in epochs:
        # ======================== Training ================================
        train_start = time.time()
        train_metrics = []

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)

        # Generate an epoch by shuffling sampling indices from the train dataset
        num_train_samples = len(tokenized_datasets["train"])
        train_samples_idx = np.random.permutation(np.arange(num_train_samples))
        train_batch_idx = generate_batch_splits(train_samples_idx,
                                                train_batch_size)

        # Gather the indexes for creating the batch and do a training step
        for step, batch_idx in enumerate(
                tqdm(train_batch_idx, desc="Training...", position=1)):
            samples = [
                tokenized_datasets["train"][int(idx)] for idx in batch_idx
            ]
            model_inputs = data_collator(samples)

            # Model forward
            model_inputs = shard(model_inputs.data)
            state, train_metric, dropout_rngs = p_train_step(
                state, model_inputs, dropout_rngs)
            train_metrics.append(train_metric)

            cur_step = epoch * (num_train_samples // train_batch_size) + step

            if cur_step % training_args.logging_steps == 0 and cur_step > 0:
                # Save metrics
                train_metric = jax_utils.unreplicate(train_metric)
                train_time += time.time() - train_start
                if has_tensorboard and jax.process_index() == 0:
                    write_train_metric(summary_writer, train_metrics,
                                       train_time, cur_step)

                epochs.write(
                    f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})"
                )

                train_metrics = []

            if cur_step % training_args.eval_steps == 0 and cur_step > 0:
                # ======================== Evaluating ==============================
                num_eval_samples = len(tokenized_datasets["validation"])
                eval_samples_idx = jnp.arange(num_eval_samples)
                eval_batch_idx = generate_batch_splits(eval_samples_idx,
                                                       eval_batch_size)

                eval_metrics = []
                for i, batch_idx in enumerate(
                        tqdm(eval_batch_idx, desc="Evaluating ...",
                             position=2)):
                    samples = [
                        tokenized_datasets["validation"][int(idx)]
                        for idx in batch_idx
                    ]
                    model_inputs = data_collator(samples)

                    # Model forward
                    model_inputs = shard(model_inputs.data)
                    metrics = p_eval_step(state.params, model_inputs)
                    eval_metrics.append(metrics)

                # get eval metrics
                eval_metrics = get_metrics(eval_metrics)
                eval_metrics = jax.tree_map(jnp.mean, eval_metrics)

                # Update progress bar
                epochs.write(
                    f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})"
                )

                # Save metrics
                if has_tensorboard and jax.process_index() == 0:
                    write_eval_metric(summary_writer, eval_metrics, cur_step)

            if cur_step % training_args.save_steps == 0 and cur_step > 0:
                # save checkpoint after each epoch and push checkpoint to the hub
                if jax.process_index() == 0:
                    params = jax.device_get(
                        jax.tree_map(lambda x: x[0], state.params))
                    model.save_pretrained(training_args.output_dir,
                                          params=params)
                    tokenizer.save_pretrained(training_args.output_dir)
                    if training_args.push_to_hub:
                        repo.push_to_hub(
                            commit_message=
                            f"Saving weights and logs of step {cur_step}",
                            blocking=False)

    # Eval after training
    if training_args.do_eval:
        num_eval_samples = len(tokenized_datasets["validation"])
        eval_samples_idx = jnp.arange(num_eval_samples)
        eval_batch_idx = generate_batch_splits(eval_samples_idx,
                                               eval_batch_size)

        eval_metrics = []
        for i, batch_idx in enumerate(
                tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
            samples = [
                tokenized_datasets["validation"][int(idx)] for idx in batch_idx
            ]
            model_inputs = data_collator(samples)

            # Model forward
            model_inputs = shard(model_inputs.data)
            metrics = p_eval_step(state.params, model_inputs)
            eval_metrics.append(metrics)

        # get eval metrics
        eval_metrics = get_metrics(eval_metrics)
        eval_metrics = jax.tree_map(lambda metric: jnp.mean(metric).item(),
                                    eval_metrics)

        if jax.process_index() == 0:
            eval_metrics = {
                f"eval_{metric_name}": value
                for metric_name, value in eval_metrics.items()
            }
            path = os.path.join(training_args.output_dir, "eval_results.json")
            with open(path, "w") as f:
                json.dump(eval_metrics, f, indent=4, sort_keys=True)
示例#6
0
def main(
    debug: bool = False,
    eager: bool = False,
    logdir: str = "runs",
    steps_per_epoch: int = 200,
    batch_size: int = 64,
    epochs: int = 100,
):

    if debug:
        import debugpy

        print("Waiting for debugger...")
        debugpy.listen(5678)
        debugpy.wait_for_client()

    current_time = datetime.now().strftime("%b%d_%H-%M-%S")
    logdir = os.path.join(logdir, current_time)

    X_train, y_train, X_test, y_test = dataget.image.mnist(
        global_cache=True).get()

    print("X_train:", X_train.shape, X_train.dtype)
    print("y_train:", y_train.shape, y_train.dtype)
    print("X_test:", X_test.shape, X_test.dtype)
    print("y_test:", y_test.shape, y_test.dtype)

    class MLP(elegy.Module):
        """Standard LeNet-300-100 MLP network."""
        def __init__(self, n1: int = 300, n2: int = 100, **kwargs):
            super().__init__(**kwargs)
            self.n1 = n1
            self.n2 = n2

        def call(self, image: jnp.ndarray):
            image = image.astype(jnp.float32) / 255.0

            mlp = elegy.nn.sequential(
                elegy.nn.Flatten(),
                elegy.nn.Linear(self.n1),
                jax.nn.relu,
                elegy.nn.Linear(self.n2),
                jax.nn.relu,
                elegy.nn.Linear(10),
            )

            return mlp(image)

    model = elegy.Model(
        module=MLP(n1=300, n2=100),
        loss=[
            elegy.losses.SparseCategoricalCrossentropy(from_logits=True),
            elegy.regularizers.GlobalL2(l=1e-4),
        ],
        metrics=elegy.metrics.SparseCategoricalAccuracy(),
        optimizer=optax.adamw(1e-3),
        run_eagerly=eager,
    )

    model.summary(X_train[:64])

    history = model.fit(
        x=X_train,
        y=y_train,
        epochs=epochs,
        steps_per_epoch=steps_per_epoch,
        batch_size=batch_size,
        validation_data=(X_test, y_test),
        shuffle=True,
        callbacks=[elegy.callbacks.TensorBoard(logdir=logdir)],
    )

    elegy.utils.plot_history(history)

    # get random samples
    idxs = np.random.randint(0, 10000, size=(9, ))
    x_sample = X_test[idxs]

    # get predictions
    y_pred = model.predict(x=x_sample)

    # plot and save results
    with SummaryWriter(os.path.join(logdir, "val")) as tbwriter:
        figure = plt.figure(figsize=(12, 12))
        for i in range(3):
            for j in range(3):
                k = 3 * i + j
                plt.subplot(3, 3, k + 1)
                plt.title(f"{np.argmax(y_pred[k])}")
                plt.imshow(x_sample[k], cmap="gray")
        # tbwriter.add_figure("Predictions", figure, 100)

    plt.show()

    print(
        "\n\n\nMetrics and images can be explored using tensorboard using:",
        f"\n \t\t\t tensorboard --logdir {logdir}",
    )
示例#7
0
def create_train_state(
    model: FlaxAutoModelForSequenceClassification,
    learning_rate_fn: Callable[[int], float],
    is_regression: bool,
    num_labels: int,
    weight_decay: float,
) -> train_state.TrainState:
    """Create initial training state."""
    class TrainState(train_state.TrainState):
        """Train state with an Optax optimizer.

        The two functions below differ depending on whether the task is classification
        or regression.

        Args:
          logits_fn: Applied to last layer to obtain the logits.
          loss_fn: Function to compute the loss.
        """

        logits_fn: Callable = struct.field(pytree_node=False)
        loss_fn: Callable = struct.field(pytree_node=False)

    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
        flat_mask = {
            path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale"))
            for path in flat_params
        }
        return traverse_util.unflatten_dict(flat_mask)

    tx = optax.adamw(learning_rate=learning_rate_fn,
                     b1=0.9,
                     b2=0.999,
                     eps=1e-6,
                     weight_decay=weight_decay,
                     mask=decay_mask_fn)

    if is_regression:

        def mse_loss(logits, labels):
            return jnp.mean((logits[..., 0] - labels)**2)

        return TrainState.create(
            apply_fn=model.__call__,
            params=model.params,
            tx=tx,
            logits_fn=lambda logits: logits[..., 0],
            loss_fn=mse_loss,
        )
    else:  # Classification.

        def cross_entropy_loss(logits, labels):
            xentropy = optax.softmax_cross_entropy(
                logits, onehot(labels, num_classes=num_labels))
            return jnp.mean(xentropy)

        return TrainState.create(
            apply_fn=model.__call__,
            params=model.params,
            tx=tx,
            logits_fn=lambda logits: logits.argmax(-1),
            loss_fn=cross_entropy_loss,
        )
示例#8
0
def main(
    debug: bool = False,
    eager: bool = False,
    logdir: str = "runs",
    steps_per_epoch: int = 200,
    batch_size: int = 64,
    epochs: int = 100,
    size: int = 32,
    num_layers: int = 3,
    num_heads: int = 8,
    dropout: float = 0.0,
):

    if debug:
        import debugpy

        print("Waiting for debugger...")
        debugpy.listen(5678)
        debugpy.wait_for_client()

    current_time = datetime.now().strftime("%b%d_%H-%M-%S")
    logdir = os.path.join(logdir, current_time)

    X_train, y_train, X_test, y_test = dataget.image.mnist(
        global_cache=True).get()

    print("X_train:", X_train.shape, X_train.dtype)
    print("y_train:", y_train.shape, y_train.dtype)
    print("X_test:", X_test.shape, X_test.dtype)
    print("y_test:", y_test.shape, y_test.dtype)

    model = elegy.Model(
        module=ViT(
            size=size,
            num_layers=num_layers,
            num_heads=num_heads,
            dropout=dropout,
        ),
        loss=[
            elegy.losses.SparseCategoricalCrossentropy(from_logits=True),
            # elegy.regularizers.GlobalL2(l=1e-4),
        ],
        metrics=elegy.metrics.SparseCategoricalAccuracy(),
        optimizer=optax.adamw(1e-3),
        run_eagerly=eager,
    )

    model.init(X_train, y_train)

    model.summary(X_train[:64])

    history = model.fit(
        x=X_train,
        y=y_train,
        epochs=epochs,
        steps_per_epoch=steps_per_epoch,
        batch_size=batch_size,
        validation_data=(X_test, y_test),
        shuffle=True,
        callbacks=[elegy.callbacks.TensorBoard(logdir=logdir)],
    )

    elegy.utils.plot_history(history)

    # get random samples
    idxs = np.random.randint(0, 10000, size=(9, ))
    x_sample = X_test[idxs]

    # get predictions
    y_pred = model.predict(x=x_sample)

    # plot and save results
    with SummaryWriter(os.path.join(logdir, "val")) as tbwriter:
        figure = plt.figure(figsize=(12, 12))
        for i in range(3):
            for j in range(3):
                k = 3 * i + j
                plt.subplot(3, 3, k + 1)
                plt.title(f"{np.argmax(y_pred[k])}")
                plt.imshow(x_sample[k], cmap="gray")
        # tbwriter.add_figure("Predictions", figure, 100)

    plt.show()

    print(
        "\n\n\nMetrics and images can be explored using tensorboard using:",
        f"\n \t\t\t tensorboard --logdir {logdir}",
    )
示例#9
0
    return X / 5.


# --------------------------

seed = 1234
rng, model_rng, hmc_rng = jax.random.split(jax.random.PRNGKey(seed), num=3)

# --------------------------
# Create optimizer
optimizer = optax.chain(
    # Set the parameters of Adam optimizer
    optax.adamw(
        learning_rate=1e-3,
        weight_decay=1e-3,
        b1=0.9,
        b2=0.999,
        eps=1e-8,
    ),
    optax.adaptive_grad_clip(1e-4),
)

maf_kwargs = {
    "rng": model_rng,
    "input_dim": 2,
    "hidden_dim": 32,
    "context_dim": 0,
    "n_layers": 3,
    "n_bins": 4,
    "permutation": "Reverse",
    "normalization": None,
示例#10
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome."
        )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files this script will use the first column for the full texts and the second column for the
    # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
    #
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        dataset = load_dataset(
            data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, keep_in_memory=False
        )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
        dataset = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer

    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
        )
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
        )
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = FlaxAutoModelForSeq2SeqLM.from_pretrained(
            model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
        )
    else:
        model = FlaxAutoModelForSeq2SeqLM.from_config(
            config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
        )

    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = dataset["train"].column_names
    elif training_args.do_eval:
        column_names = dataset["validation"].column_names
    elif training_args.do_predict:
        column_names = dataset["test"].column_names
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return

    # Get the column names for input/target.
    dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
    if data_args.text_column is None:
        text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
    else:
        text_column = data_args.text_column
        if text_column not in column_names:
            raise ValueError(
                f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.summary_column is None:
        summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        summary_column = data_args.summary_column
        if summary_column not in column_names:
            raise ValueError(
                f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
            )

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length

    # In Flax, for seq2seq models we need to pass `decoder_input_ids`
    # as the Flax models don't accept `labels`, we need to prepare the decoder_input_ids here
    # for that dynamically import the `shift_tokens_right` function from the model file
    model_module = __import__(model.__module__, fromlist=["shift_tokens_tight"])
    shift_tokens_right_fn = getattr(model_module, "shift_tokens_right")

    # Setting padding="max_length" as we need fixed length inputs for jitted functions
    def preprocess_function(examples):
        inputs = examples[text_column]
        targets = examples[summary_column]
        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(
            inputs, max_length=data_args.max_source_length, padding="max_length", truncation=True, return_tensors="np"
        )

        # Setup the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(
                targets, max_length=max_target_length, padding="max_length", truncation=True, return_tensors="np"
            )

        model_inputs["labels"] = labels["input_ids"]
        decoder_input_ids = shift_tokens_right_fn(
            jnp.array(labels["input_ids"]), config.pad_token_id, config.decoder_start_token_id
        )
        model_inputs["decoder_input_ids"] = np.asarray(decoder_input_ids)

        # We need decoder_attention_mask so we can ignore pad tokens from loss
        model_inputs["decoder_attention_mask"] = labels["attention_mask"]

        return model_inputs

    if training_args.do_train:
        if "train" not in dataset:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = dataset["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
        train_dataset = train_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on train dataset",
        )

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
        if "validation" not in dataset:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = dataset["validation"]
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
        eval_dataset = eval_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on validation dataset",
        )

    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
        if "test" not in dataset:
            raise ValueError("--do_predict requires a test dataset")
        predict_dataset = dataset["test"]
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
        predict_dataset = predict_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on prediction dataset",
        )

    # Metric
    metric = load_metric("rouge")

    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [label.strip() for label in labels]

        # rougeLSum expects newline after each sentence
        preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
        labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]

        return preds, labels

    def compute_metrics(preds, labels):
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
        decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

        # Some simple post-processing
        decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)

        result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
        # Extract a few results from ROUGE
        result = {key: value.mid.fmeasure * 100 for key, value in result.items()}

        prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
        result["gen_len"] = np.mean(prediction_lens)
        result = {k: round(v, 4) for k, v in result.items()}
        return result

    # Enable tensorboard only on the master node
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable."
        )

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    rng, dropout_rng = jax.random.split(rng)

    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
    eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
    steps_per_epoch = len(train_dataset) // train_batch_size
    total_train_steps = steps_per_epoch * num_epochs

    # Create learning rate schedule
    linear_decay_lr_schedule_fn = create_learning_rate_fn(
        len(train_dataset),
        train_batch_size,
        training_args.num_train_epochs,
        training_args.warmup_steps,
        training_args.learning_rate,
    )

    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    # Note that this mask is specifically adapted for FlaxBart.
    # For FlaxT5, one should correct the layer norm parameter naming
    # accordingly - see `run_t5_mlm_flax.py` e.g.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
        layer_norm_params = [
            (name, "scale") for name in ["self_attn_layer_norm", "layernorm_embedding", "final_layer_norm"]
        ]
        flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_params) for path in flat_params}
        return traverse_util.unflatten_dict(flat_mask)

    # create adam optimizer
    adamw = optax.adamw(
        learning_rate=linear_decay_lr_schedule_fn,
        b1=training_args.adam_beta1,
        b2=training_args.adam_beta2,
        eps=training_args.adam_epsilon,
        weight_decay=training_args.weight_decay,
        mask=decay_mask_fn,
    )

    # Setup train state
    state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng)

    # label smoothed cross entropy
    def loss_fn(logits, labels, padding_mask, label_smoothing_factor=0.0):
        """
        The label smoothing implementation is adapted from Flax's official example:
        https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104
        """
        vocab_size = logits.shape[-1]
        confidence = 1.0 - label_smoothing_factor
        low_confidence = (1.0 - confidence) / (vocab_size - 1)
        normalizing_constant = -(
            confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20)
        )
        soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence)

        loss = optax.softmax_cross_entropy(logits, soft_labels)
        loss = loss - normalizing_constant

        # ignore padded tokens from loss
        loss = loss * padding_mask
        loss = loss.sum() / padding_mask.sum()
        return loss

    # Define gradient update step fn
    def train_step(state, batch, label_smoothing_factor=0.0):
        dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)

        def compute_loss(params):
            labels = batch.pop("labels")
            logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
            loss = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor)
            return loss

        grad_fn = jax.value_and_grad(compute_loss)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")

        new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)

        metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
        metrics = jax.lax.pmean(metrics, axis_name="batch")

        return new_state, metrics

    # Define eval fn
    def eval_step(params, batch, label_smoothing_factor=0.0):
        labels = batch.pop("labels")
        logits = model(**batch, params=params, train=False)[0]
        loss = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor)

        # summarize metrics
        metrics = {"loss": loss}
        metrics = jax.lax.pmean(metrics, axis_name="batch")
        return metrics

    # Define generation function
    max_length = (
        data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length
    )
    num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams
    gen_kwargs = {"max_length": max_length, "num_beams": num_beams}

    def generate_step(params, batch):
        model.params = params
        output_ids = model.generate(batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs)
        return output_ids.sequences

    # Create parallel version of the train and eval step
    p_train_step = jax.pmap(
        partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch", donate_argnums=(0,)
    )
    p_eval_step = jax.pmap(partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch")
    p_generate_step = jax.pmap(generate_step, "batch")

    # Replicate the train state on each device
    state = state.replicate()

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {num_epochs}")
    logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel & distributed) = {train_batch_size}")
    logger.info(f"  Total optimization steps = {total_train_steps}")

    train_time = 0
    epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
    for epoch in epochs:
        # ======================== Training ================================
        train_start = time.time()

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)
        train_metrics = []

        # Generate an epoch by shuffling sampling indices from the train dataset
        train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
        steps_per_epoch = len(train_dataset) // train_batch_size
        # train
        for _ in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
            batch = next(train_loader)
            state, train_metric = p_train_step(state, batch)
            train_metrics.append(train_metric)

        train_time += time.time() - train_start

        train_metric = unreplicate(train_metric)

        epochs.write(
            f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
        )

        # ======================== Evaluating ==============================
        eval_metrics = []
        eval_preds = []
        eval_labels = []

        eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size)
        eval_steps = len(eval_dataset) // eval_batch_size
        for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
            # Model forward
            batch = next(eval_loader)
            labels = batch["labels"]

            metrics = p_eval_step(state.params, batch)
            eval_metrics.append(metrics)

            # generation
            if data_args.predict_with_generate:
                generated_ids = p_generate_step(state.params, batch)
                eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
                eval_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1])))

        # normalize eval metrics
        eval_metrics = get_metrics(eval_metrics)
        eval_metrics = jax.tree_map(jnp.mean, eval_metrics)

        # compute ROUGE metrics
        rouge_desc = ""
        if data_args.predict_with_generate:
            rouge_metrics = compute_metrics(eval_preds, eval_labels)
            eval_metrics.update(rouge_metrics)
            rouge_desc = " ".join([f"Eval {key}: {value} |" for key, value in rouge_metrics.items()])

        # Print metrics and update progress bar
        desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | {rouge_desc})"
        epochs.write(desc)
        epochs.desc = desc

        # Save metrics
        if has_tensorboard and jax.process_index() == 0:
            cur_step = epoch * (len(train_dataset) // train_batch_size)
            write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step)

    # ======================== Prediction loop ==============================
    if training_args.do_predict:
        logger.info("*** Predict ***")

        pred_metrics = []
        pred_generations = []
        pred_labels = []

        pred_loader = data_loader(input_rng, predict_dataset, eval_batch_size)
        pred_steps = len(predict_dataset) // eval_batch_size
        for _ in tqdm(range(pred_steps), desc="Predicting...", position=2, leave=False):
            # Model forward
            batch = next(pred_loader)
            labels = batch["labels"]

            metrics = p_eval_step(state.params, batch)
            pred_metrics.append(metrics)

            # generation
            if data_args.predict_with_generate:
                generated_ids = p_generate_step(state.params, batch)
                pred_generations.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
                pred_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1])))

        # normalize prediction metrics
        pred_metrics = get_metrics(pred_metrics)
        pred_metrics = jax.tree_map(jnp.mean, pred_metrics)

        # compute ROUGE metrics
        rouge_desc = ""
        if data_args.predict_with_generate:
            rouge_metrics = compute_metrics(pred_generations, pred_labels)
            pred_metrics.update(rouge_metrics)
            rouge_desc = " ".join([f"Predict {key}: {value} |" for key, value in rouge_metrics.items()])

        # Print metrics
        desc = f"Predict Loss: {pred_metrics['loss']} | {rouge_desc})"
        logger.info(desc)

        # save checkpoint after each epoch and push checkpoint to the hub
        if jax.process_index() == 0:
            params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
            model.save_pretrained(
                training_args.output_dir,
                params=params,
                push_to_hub=training_args.push_to_hub,
                commit_message=f"Saving weights and logs of epoch {epoch+1}",
            )
示例#11
0
    # Note that this mask is specifically adapted for FlaxBERT-like models.
    # For other models, one should correct the layer norm parameter naming
    # accordingly.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
        flat_mask = {
            path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale"))
            for path in flat_params
        }
        return traverse_util.unflatten_dict(flat_mask)

    # create adam optimizer
    adamw = optax.adamw(
        learning_rate=linear_decay_lr_schedule_fn,
        b1=training_args.adam_beta1,
        b2=training_args.adam_beta2,
        eps=1e-8,
        weight_decay=training_args.weight_decay,
        mask=decay_mask_fn,
    )

    # Setup train state
    state = train_state.TrainState.create(apply_fn=model.__call__,
                                          params=model.params,
                                          tx=adamw)

    # Define gradient update step fn
    def train_step(state, batch, dropout_rng):
        dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)

        def loss_fn(params):
            labels = batch.pop("labels")
示例#12
0
def main():
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome."
        )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        transformers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
        )
    elif model_args.text_model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.text_model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
        )
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    model = FlaxHybridCLIP.from_text_vision_pretrained(
        model_args.text_model_name_or_path,
        model_args.vision_model_name_or_path,
        seed=training_args.seed,
        dtype=getattr(jnp, model_args.dtype),
        text_from_pt=model_args.from_pt,
        vision_from_pt=model_args.from_pt,
    )
    config = model.config
    # set seed for torch dataloaders
    set_seed(training_args.seed)

    # Initialize torchvision transforms and jit them for faster processing
    preprocess = Transform(config.vision_config.image_size)
    preprocess = torch.jit.script(preprocess)

    # Initialize the image-text dataset
    train_dataset = ImageTextDataset(
        data_args.data_dir,
        data_args.train_file,
        captions_per_image=2,
        transform=preprocess,
    )

    eval_dataset = ImageTextDataset(
        data_args.data_dir,
        data_args.validation_file,
        captions_per_image=1,
        transform=preprocess,
    )

    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
    eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
    steps_per_epoch = len(train_dataset) // train_batch_size
    total_train_steps = steps_per_epoch * num_epochs

    # Use collate function to tokenizer the text and convert the processed images to numpy
    def collate_fn(examples):
        pixel_values = torch.stack([example[0] for example in examples]).permute(0, 2, 3, 1).numpy()
        captions = [example[1] for example in examples]
        inputs = tokenizer(
            captions, max_length=data_args.max_seq_length, padding="max_length", truncation=True, return_tensors="np"
        )

        batch = {
            "pixel_values": pixel_values,
            "input_ids": inputs["input_ids"],
            "attention_mask": inputs["attention_mask"],
        }

        return batch

    # Create data loaders
    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=train_batch_size,
        shuffle=True,
        num_workers=data_args.preprocessing_num_workers,
        persistent_workers=True,
        drop_last=True,
        collate_fn=collate_fn,
    )

    eval_loader = torch.utils.data.DataLoader(
        eval_dataset,
        batch_size=eval_batch_size,
        shuffle=False,
        num_workers=data_args.preprocessing_num_workers,
        persistent_workers=True,
        drop_last=True,
        collate_fn=collate_fn,
    )

    # Enable tensorboard only on the master node
    if has_tensorboard and jax.process_index() == 0:
        summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir).joinpath("logs").as_posix())

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    rng, dropout_rng = jax.random.split(rng)

    # Create learning rate schedule
    linear_decay_lr_schedule_fn = create_learning_rate_fn(
        len(train_dataset),
        train_batch_size,
        training_args.num_train_epochs,
        training_args.warmup_steps,
        training_args.learning_rate,
    )

    # create adam optimizer
    adamw = optax.adamw(
        learning_rate=linear_decay_lr_schedule_fn,
        b1=training_args.adam_beta1,
        b2=training_args.adam_beta2,
        eps=training_args.adam_epsilon,
        weight_decay=training_args.weight_decay,
    )

    # Setup train state
    state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng)

    def cross_entropy(logits, axis):
        logprobs = jax.nn.log_softmax(logits, axis=axis)
        nll = jnp.diag(logprobs)
        ce = -jnp.mean(nll)
        return ce

    def clip_loss(similarity):
        loss = (cross_entropy(similarity, axis=0) + cross_entropy(similarity, axis=1)) / 2
        return loss

    # Define gradient update step fn
    def train_step(state, batch):
        dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)

        def compute_loss(params):
            logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
            loss = clip_loss(logits)
            return loss

        grad_fn = jax.value_and_grad(compute_loss)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")

        new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)

        metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
        metrics = jax.lax.pmean(metrics, axis_name="batch")

        return new_state, metrics

    # Define eval fn
    def eval_step(params, batch):
        logits = model(**batch, params=params, train=False)[0]
        loss = clip_loss(logits)

        # summarize metrics
        metrics = {"loss": loss}
        metrics = jax.lax.pmean(metrics, axis_name="batch")
        return metrics

    # Create parallel version of the train and eval step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
    p_eval_step = jax.pmap(eval_step, "batch")

    # Replicate the train state on each device
    state = state.replicate()

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {num_epochs}")
    logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel & distributed) = {train_batch_size}")
    logger.info(f"  Total optimization steps = {total_train_steps}")

    train_time = 0
    # Create sampling rng
    rng, input_rng = jax.random.split(rng)

    epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
    for epoch in epochs:
        # ======================== Training ================================
        train_start = time.time()

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)
        train_metrics = []

        steps_per_epoch = len(train_dataset) // train_batch_size
        train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False)
        # train
        for batch in train_loader:
            batch = shard(batch)
            state, train_metric = p_train_step(state, batch)
            train_metrics.append(train_metric)

            train_step_progress_bar.update(1)

        train_time += time.time() - train_start

        train_metric = unreplicate(train_metric)

        train_step_progress_bar.close()
        epochs.write(
            f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
        )

        # ======================== Evaluating ==============================
        eval_metrics = []
        eval_steps = len(eval_dataset) // eval_batch_size
        eval_step_progress_bar = tqdm(total=eval_steps, desc="Evaluating...", position=2, leave=False)
        for batch in eval_loader:
            # Model forward
            batch = shard(batch)
            metrics = p_eval_step(state.params, batch)
            eval_metrics.append(metrics)

            eval_step_progress_bar.update(1)

        # normalize eval metrics
        eval_metrics = get_metrics(eval_metrics)

        eval_metrics = jax.tree_map(jnp.mean, eval_metrics)

        # Print metrics and update progress bar
        eval_step_progress_bar.close()
        desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']})"
        epochs.write(desc)
        epochs.desc = desc

        # Save metrics
        if has_tensorboard and jax.process_index() == 0:
            cur_step = epoch * (len(train_dataset) // train_batch_size)
            write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step)

        # save checkpoint after each epoch and push checkpoint to the hub
        if jax.process_index() == 0:
            params = jax.device_get(unreplicate(state.params))
            model.save_pretrained(
                training_args.output_dir,
                params=params,
                push_to_hub=training_args.push_to_hub,
                commit_message=f"Saving weights and logs of epoch {epoch+1}",
            )
示例#13
0
文件: mnist.py 项目: poets-ai/elegy
def main(
    debug: bool = False,
    eager: bool = False,
    logdir: str = "runs",
    steps_per_epoch: int = 200,
    batch_size: int = 64,
    epochs: int = 100,
):

    if debug:
        import debugpy

        print("Waiting for debugger...")
        debugpy.listen(5678)
        debugpy.wait_for_client()

    current_time = datetime.now().strftime("%b%d_%H-%M-%S")
    logdir = os.path.join(logdir, current_time)

    dataset = load_dataset("mnist")
    dataset.set_format("np")
    X_train = np.stack(dataset["train"]["image"])
    y_train = dataset["train"]["label"]
    X_test = np.stack(dataset["test"]["image"])
    y_test = dataset["test"]["label"]

    print("X_train:", X_train.shape, X_train.dtype)
    print("y_train:", y_train.shape, y_train.dtype)
    print("X_test:", X_test.shape, X_test.dtype)
    print("y_test:", y_test.shape, y_test.dtype)

    model = eg.Model(
        module=MLP(n1=300, n2=100),
        loss=[
            eg.losses.Crossentropy(),
            eg.regularizers.L2(l=1e-4),
        ],
        metrics=eg.metrics.Accuracy(),
        optimizer=optax.adamw(1e-3),
        eager=eager,
    )

    model.summary(X_train[:64])

    history = model.fit(
        inputs=X_train,
        labels=y_train,
        epochs=epochs,
        steps_per_epoch=steps_per_epoch,
        batch_size=batch_size,
        validation_data=(X_test, y_test),
        shuffle=True,
        callbacks=[eg.callbacks.TensorBoard(logdir=logdir)],
    )

    eg.utils.plot_history(history)

    # get random samples
    idxs = np.random.randint(0, 10000, size=(9,))
    x_sample = X_test[idxs]

    # get predictions
    y_pred = model.predict(x=x_sample)

    # plot and save results
    with SummaryWriter(os.path.join(logdir, "val")) as tbwriter:
        figure = plt.figure(figsize=(12, 12))
        for i in range(3):
            for j in range(3):
                k = 3 * i + j
                plt.subplot(3, 3, k + 1)
                plt.title(f"{np.argmax(y_pred[k])}")
                plt.imshow(x_sample[k], cmap="gray")
        # tbwriter.add_figure("Predictions", figure, 100)

    plt.show()

    print(
        "\n\n\nMetrics and images can be explored using tensorboard using:",
        f"\n \t\t\t tensorboard --logdir {logdir}",
    )
示例#14
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome."
        )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    #  Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        dataset = load_dataset(
            data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, keep_in_memory=False
        )

        if "validation" not in dataset.keys():
            dataset["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
            )
            dataset["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
            )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
        dataset = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)

        if "validation" not in dataset.keys():
            dataset["validation"] = load_dataset(
                extension,
                keep_linebreaks=data_args.keep_linebreaks,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
            )
            dataset["train"] = load_dataset(
                extension,
                keep_linebreaks=data_args.keep_linebreaks,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
            )
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer

    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
        )
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
        )
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = FlaxAutoModelForCausalLM.from_pretrained(
            model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
        )
    else:
        model = FlaxAutoModelForCausalLM.from_config(
            config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
        )

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = dataset["train"].column_names
    else:
        column_names = dataset["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
    tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")

    def tokenize_function(examples):
        with CaptureLogger(tok_logger) as cl:
            output = tokenizer(examples[text_column_name])
        # clm input could be much much longer than block_size
        if "Token indices sequence length is longer than the" in cl.out:
            tok_logger.warning(
                "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits before being passed to the model."
            )
        return output

    tokenized_datasets = dataset.map(
        tokenize_function,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        remove_columns=column_names,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    if data_args.block_size is None:
        block_size = tokenizer.model_max_length
        if block_size > config.max_position_embeddings:
            logger.warning(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --block_size xxx."
            )
            block_size = 1024
    else:
        if data_args.block_size > tokenizer.model_max_length:
            logger.warning(
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
            )
        block_size = min(data_args.block_size, tokenizer.model_max_length)

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
        concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
        if total_length >= block_size:
            total_length = (total_length // block_size) * block_size
        # Split by chunks of max_len.
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map

    lm_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = lm_datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = lm_datasets["validation"]
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))

    # Enable tensorboard only on the master node
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable."
        )

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    rng, dropout_rng = jax.random.split(rng)

    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
    eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
    steps_per_epoch = len(train_dataset) // train_batch_size
    total_train_steps = steps_per_epoch * num_epochs

    # Create learning rate schedule
    linear_decay_lr_schedule_fn = create_learning_rate_fn(
        len(train_dataset),
        train_batch_size,
        training_args.num_train_epochs,
        training_args.warmup_steps,
        training_args.learning_rate,
    )

    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    # Note that this mask is specifically adapted for FlaxGPT2.
    # For other models, one should correct the layer norm parameter naming
    # accordingly.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
        flat_mask = {
            path: (path[-1] != "bias" and path[-2:] not in [("ln_1", "scale"), ("ln_2", "scale"), ("ln_f", "scale")])
            for path in flat_params
        }
        return traverse_util.unflatten_dict(flat_mask)

    # create adam optimizer
    if training_args.adafactor:
        # We use the default parameters here to initialize adafactor,
        # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
        optimizer = optax.adafactor(
            learning_rate=linear_decay_lr_schedule_fn,
        )
    else:
        optimizer = optax.adamw(
            learning_rate=linear_decay_lr_schedule_fn,
            b1=training_args.adam_beta1,
            b2=training_args.adam_beta2,
            eps=training_args.adam_epsilon,
            weight_decay=training_args.weight_decay,
            mask=decay_mask_fn,
        )

    # Setup train state
    state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer, dropout_rng=dropout_rng)

    def loss_fn(logits, labels):
        shift_logits = logits[..., :-1, :]
        shift_labels = labels[..., 1:]
        loss = optax.softmax_cross_entropy(shift_logits, onehot(shift_labels, shift_logits.shape[-1]))
        return loss.mean()

    # Define gradient update step fn
    def train_step(state, batch):
        dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)

        def compute_loss(params):
            labels = batch.pop("labels")
            logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
            loss = loss_fn(logits, labels)
            return loss

        grad_fn = jax.value_and_grad(compute_loss)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")

        new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)

        metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
        metrics = jax.lax.pmean(metrics, axis_name="batch")

        return new_state, metrics

    # Define eval fn
    def eval_step(params, batch):
        labels = batch.pop("labels")
        logits = model(**batch, params=params, train=False)[0]
        loss = loss_fn(logits, labels)

        # summarize metrics
        metrics = {"loss": loss}
        metrics = jax.lax.pmean(metrics, axis_name="batch")
        return metrics

    # Create parallel version of the train and eval step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
    p_eval_step = jax.pmap(eval_step, "batch")

    # Replicate the train state on each device
    state = state.replicate()

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {num_epochs}")
    logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel & distributed) = {train_batch_size}")
    logger.info(f"  Total optimization steps = {total_train_steps}")

    train_time = 0
    train_metrics = []
    epochs = tqdm(range(num_epochs), desc="Epoch ... ", position=0)
    for epoch in epochs:
        # ======================== Training ================================
        train_start = time.time()

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)

        # Generate an epoch by shuffling sampling indices from the train dataset
        train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
        steps_per_epoch = len(train_dataset) // train_batch_size
        # train
        for step in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
            batch = next(train_loader)
            batch = shard(batch)
            state, train_metric = p_train_step(state, batch)
            train_metrics.append(train_metric)

            cur_step = epoch * (len(train_dataset) // train_batch_size) + step

            if cur_step % training_args.logging_steps == 0 and cur_step > 0:
                # Save metrics
                train_metric = unreplicate(train_metric)
                train_time += time.time() - train_start
                if has_tensorboard and jax.process_index() == 0:
                    write_train_metric(summary_writer, train_metrics, train_time, cur_step)

                epochs.write(
                    f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})"
                )

                train_metrics = []

            if cur_step % training_args.eval_steps == 0 and cur_step > 0:
                # ======================== Evaluating ==============================
                eval_metrics = []
                eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size)
                eval_steps = len(eval_dataset) // eval_batch_size
                for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
                    # Model forward
                    batch = next(eval_loader)
                    batch = shard(batch)
                    metrics = p_eval_step(state.params, batch)
                    eval_metrics.append(metrics)

                # normalize eval metrics
                eval_metrics = get_metrics(eval_metrics)
                eval_metrics = jax.tree_map(jnp.mean, eval_metrics)

                try:
                    eval_metrics["perplexity"] = math.exp(eval_metrics["loss"])
                except OverflowError:
                    eval_metrics["perplexity"] = float("inf")

                # Print metrics and update progress bar
                desc = f"Step... ({cur_step} | Eval Loss: {eval_metrics['loss']} | Eval Perplexity: {eval_metrics['perplexity']})"
                epochs.write(desc)
                epochs.desc = desc

                # Save metrics
                if has_tensorboard and jax.process_index() == 0:
                    write_eval_metric(summary_writer, eval_metrics, cur_step)

            if cur_step % training_args.save_steps == 0 and cur_step > 0:
                # save checkpoint after each epoch and push checkpoint to the hub
                if jax.process_index() == 0:
                    params = jax.device_get(unreplicate(state.params))
                    model.save_pretrained(
                        training_args.output_dir,
                        params=params,
                        push_to_hub=training_args.push_to_hub,
                        commit_message=f"Saving weights and logs of step {cur_step}",
                    )
示例#15
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome."
        )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        dataset = load_dataset(
            data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, keep_in_memory=False
        )

        if "validation" not in dataset.keys():
            dataset["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
            )
            dataset["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
            )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
        dataset = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained config and tokenizer
    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
        )
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
        )
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if training_args.do_train:
        column_names = dataset["train"].column_names
    else:
        column_names = dataset["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
    tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")

    def tokenize_function(examples):
        with CaptureLogger(tok_logger) as cl:
            output = tokenizer(examples[text_column_name])
        # clm input could be much much longer than block_size
        if "Token indices sequence length is longer than the" in cl.out:
            tok_logger.warning(
                "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
                " before being passed to the model."
            )
        return output

    tokenized_datasets = dataset.map(
        tokenize_function,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        remove_columns=column_names,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    if data_args.block_size is None:
        block_size = tokenizer.model_max_length
        if block_size > config.max_position_embeddings:
            logger.warning(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --block_size xxx."
            )
            block_size = 1024
    else:
        if data_args.block_size > tokenizer.model_max_length:
            logger.warning(
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
            )
        block_size = min(data_args.block_size, tokenizer.model_max_length)

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
        concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
        if total_length >= block_size:
            total_length = (total_length // block_size) * block_size
        # Split by chunks of max_len.
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map

    lm_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = lm_datasets["train"]
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = lm_datasets["validation"]
        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))

    # Enable tensorboard only on the master node
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable."
        )

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    rng, dropout_rng = jax.random.split(rng)

    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
    eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
    steps_per_epoch = len(train_dataset) // train_batch_size
    total_train_steps = steps_per_epoch * num_epochs

    # TODO: weights should be initialized in pjitted fun, this won't work for REALLY large models
    # TODO: when loading from pre-trained model we need to make sure the vocab is divisible by num_partitions
    # GPT2's vocab is odd, we need to resize it for fine-tuning
    model = FlaxAutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
    )

    # Create learning rate schedule
    linear_decay_lr_schedule_fn = create_learning_rate_fn(
        len(train_dataset),
        train_batch_size,
        training_args.num_train_epochs,
        training_args.warmup_steps,
        training_args.learning_rate,
    )

    optimizer = optax.adamw(
        learning_rate=linear_decay_lr_schedule_fn,
        b1=training_args.adam_beta1,
        b2=training_args.adam_beta2,
        eps=training_args.adam_epsilon,
        weight_decay=training_args.weight_decay,
    )

    def get_initial_state(params):
        state = optimizer.init(params)
        return tuple(state), params

    # Get PartitionSpec for model params
    param_spec = set_partitions(unfreeze(model.params))

    # Get the PyTree for opt_state, we don't actually initialize the opt_state yet.
    params_shapes = jax.tree_map(lambda x: x.shape, model.params)
    state_shapes = jax.eval_shape(get_initial_state, params_shapes)

    # get PartitionSpec for opt_state, this is very specific to adamw
    # TODO: optax returns different state for different optimizers, how can we handle this generically ?
    # or maybe we don't since in our examples we just use adamw or adafactor
    def get_opt_spec(x):
        if isinstance(x, dict):
            return param_spec
        return None

    opt_state_spec, param_spec = jax.tree_map(
        get_opt_spec, state_shapes, is_leaf=lambda x: isinstance(x, (dict, optax.EmptyState))
    )

    # pjit the get_initial_state function to shard params and init
    # optimizer state in sharded way
    p_get_initial_state = pjit(
        get_initial_state,
        in_axis_resources=None,
        out_axis_resources=(opt_state_spec, param_spec),
    )

    # hack: move the inital params to CPU to free up device memory
    # TODO: allow loading weights on CPU in pre-trained model
    model.params = jax.tree_map(lambda x: np.asarray(x), model.params)

    # mesh defination
    mesh_devices = np.array(jax.devices()).reshape(1, jax.local_device_count())

    # actually initialize the opt_state
    with mesh(mesh_devices, ("dp", "mp")):
        opt_state, params = p_get_initial_state(freeze(model.params))

    # cross-entropy with z loss
    def loss_fn(logits, labels, z_loss=0):
        shift_logits = logits[..., :-1, :]
        shift_labels = labels[..., 1:]

        shift_labels = onehot(shift_labels, shift_logits.shape[-1])

        shift_logits = shift_logits - jax.lax.stop_gradient(shift_logits.max(axis=-1, keepdims=True))
        log_z = jnp.log(jnp.sum(jnp.exp(shift_logits), axis=-1, keepdims=True))
        log_softmax = shift_logits - log_z
        loss = -jnp.sum(shift_labels * log_softmax, axis=-1)

        loss += (1e-4 * jnp.square(log_z.squeeze(-1))) * z_loss

        return loss.mean()

    # Define gradient update step fn
    # TODO: try to use TrainState instead of passing params and opt_state individually
    def train_step(params, opt_state, dropout_rng, batch, step):
        dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)

        def compute_loss(params):
            labels = batch.pop("labels")
            logits = model(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
            loss = loss_fn(logits, labels, z_loss=1.0)
            return loss

        grad_fn = jax.value_and_grad(compute_loss)
        loss, grads = grad_fn(params)

        updates, new_opt_state = optimizer.update(grads, opt_state, params)
        new_params = optax.apply_updates(params, updates)

        metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(step)}
        return new_params, tuple(new_opt_state), new_dropout_rng, metrics, step + 1

    # Define eval fn
    def eval_step(input_ids, labels, params):
        logits = model(input_ids=input_ids, params=params, train=False)[0]
        loss = loss_fn(logits, labels)
        # metrics
        return {"loss": loss}

    p_train_step = pjit(
        train_step,
        in_axis_resources=(param_spec, opt_state_spec, None, None, None),
        out_axis_resources=(param_spec, opt_state_spec, None, None, None),
        donate_argnums=(0, 1),
    )

    p_eval_step = pjit(
        eval_step,
        in_axis_resources=(None, None, param_spec),
        out_axis_resources=None,
    )

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {num_epochs}")
    logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel & distributed) = {train_batch_size}")
    logger.info(f"  Total optimization steps = {total_train_steps}")

    train_time = 0
    train_metrics = []
    epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
    global_step = 0
    # we are not doing 2D parallelism (yet!), this just does model parallelism
    with mesh(mesh_devices, ("dp", "mp")):
        for _ in epochs:
            # ======================== Training ================================
            train_start = time.time()

            # Create sampling rng
            rng, input_rng = jax.random.split(rng)

            # Generate an epoch by shuffling sampling indices from the train dataset
            train_metrics = []
            train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
            steps_per_epoch = len(train_dataset) // train_batch_size

            # train
            for _ in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
                batch = next(train_loader)
                params, opt_state, dropout_rng, train_metric, global_step = p_train_step(
                    params,
                    opt_state,
                    dropout_rng,
                    batch,
                    global_step,
                )
                train_metrics.append(train_metric)

                cur_step = global_step

                if cur_step % training_args.logging_steps == 0 and cur_step > 0:
                    # Save metrics
                    train_time += time.time() - train_start
                    if has_tensorboard and jax.process_index() == 0:
                        write_train_metric(summary_writer, train_metrics, train_time, cur_step)

                    epochs.write(
                        f"Step... ({cur_step} | Loss: {train_metric['loss']}, Learning Rate:"
                        f" {train_metric['learning_rate']})"
                    )

                    train_metrics = []

                if cur_step % training_args.eval_steps == 0 and cur_step > 0:
                    # ======================== Evaluating ==============================
                    eval_metrics = []
                    eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size)
                    eval_steps = len(eval_dataset) // eval_batch_size

                    for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
                        batch = next(eval_loader)
                        metrics = p_eval_step(batch["input_ids"], batch["labels"], params)
                        eval_metrics.append(metrics)

                    # normalize eval metrics
                    eval_metrics = stack_forest(eval_metrics)
                    eval_metrics = jax.tree_map(jnp.mean, eval_metrics)

                    try:
                        eval_metrics["perplexity"] = math.exp(eval_metrics["loss"])
                    except OverflowError:
                        eval_metrics["perplexity"] = float("inf")

                    logger.info(
                        f"Step... ({cur_step} | Eval loss: {eval_metrics['loss']} | Eval Perplexity:"
                        f" {eval_metrics['perplexity']}"
                    )

                if cur_step % training_args.save_steps == 0 and cur_step > 0:
                    # save checkpoint after each epoch and push checkpoint to the hub
                    if jax.process_index() == 0:
                        params = jax.device_get(params)
                        model.save_pretrained(
                            training_args.output_dir,
                            params=params,
                            push_to_hub=training_args.push_to_hub,
                            commit_message=f"Saving weights and logs of step {cur_step}",
                        )
示例#16
0
 def adamw(weight_decay):
     return optax.adamw(learning_rate=learning_rate_fn,
                        b1=0.9,
                        b2=0.999,
                        eps=1e-6,
                        weight_decay=weight_decay)
示例#17
0
文件: roc_auc.py 项目: jtamanas/LBI
def train_classifier(
    rng_key,
    a_samples,
    b_samples,
    train_split=0.9,
    learning_rate=1e-4,
    train_nsteps=10000,
    eval_interval=10,
    patience=5000,
    num_layers=3,
    hidden_dim=128,
):
    # --------------------------
    # Create optimizer
    optimizer = optax.chain(
        # Set the parameters of Adam optimizer
        optax.adamw(
            learning_rate=learning_rate,
            weight_decay=1e-1,
            b1=0.9,
            b2=0.999,
            eps=1e-8,
        ),
        optax.adaptive_grad_clip(1e-2),
    )

    # --------------------------
    # Create model
    model, log_prob, loss_fn = construct_Classifier(
        num_layers=num_layers,
        hidden_dim=hidden_dim,
        use_residual=True,
        act="celu",
    )

    params, opt_state = parallel_init_fn(
        jax.random.split(rng_key, 1),
        model,
        optimizer,
        (a_samples.shape[-1], ),
        (a_samples.shape[-1], ),
    )

    # --------------------------
    # Create trainer

    train_step = get_train_step(loss_fn, optimizer)
    valid_step = get_valid_step({"valid_loss": loss_fn})

    trainer = getTrainer(
        train_step,
        valid_step=valid_step,
        nsteps=train_nsteps,
        eval_interval=eval_interval,
        patience=patience,
        logger=None,
        train_kwargs=None,
        valid_kwargs=None,
    )

    train_dataloader, valid_dataloader = data_loader_builder(
        a_samples, b_samples, train_split=train_split)

    model_params = trainer(
        params,
        opt_state,
        train_dataloader,
        valid_dataloader=valid_dataloader,
    )

    return model_params, log_prob