def test_sparse_repeated_indices(self, dtype): if tf.test.is_gpu_available() and dtype is tf.dtypes.half: return repeated_index_update_var = tf.Variable([[1.0], [2.0]], dtype=dtype) aggregated_update_var = tf.Variable([[1.0], [2.0]], dtype=dtype) grad_repeated_index = tf.IndexedSlices( tf.constant([0.1, 0.1], shape=[2, 1], dtype=dtype), tf.constant([1, 1]), tf.constant([2, 1])) grad_aggregated = tf.IndexedSlices( tf.constant([0.2], shape=[1, 1], dtype=dtype), tf.constant([1]), tf.constant([2, 1])) opt1 = yogi.Yogi() opt2 = yogi.Yogi() if not tf.executing_eagerly(): repeated_update = opt1.apply_gradients([ (grad_repeated_index, repeated_index_update_var) ]) aggregated_update = opt2.apply_gradients([(grad_aggregated, aggregated_update_var)]) self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertAllClose(self.evaluate(aggregated_update_var), self.evaluate(repeated_index_update_var)) for _ in range(3): if not tf.executing_eagerly(): self.evaluate(repeated_update) self.evaluate(aggregated_update) else: opt1.apply_gradients([(grad_repeated_index, repeated_index_update_var)]) opt2.apply_gradients([(grad_aggregated, aggregated_update_var) ]) self.assertAllClose(self.evaluate(aggregated_update_var), self.evaluate(repeated_index_update_var))
def test_get_optimizer_momentum_beta(self): self.assertEqual( fed_avg_local_adaptivity._get_optimizer_momentum_beta( tf.keras.optimizers.SGD()), 0.0) self.assertEqual( fed_avg_local_adaptivity._get_optimizer_momentum_beta( tf.keras.optimizers.SGD(momentum=0.5)), 0.5) self.assertEqual( fed_avg_local_adaptivity._get_optimizer_momentum_beta( tf.keras.optimizers.Adagrad()), 0.0) self.assertEqual( fed_avg_local_adaptivity._get_optimizer_momentum_beta( tf.keras.optimizers.Adam(beta_1=0.9)), 0.9) self.assertEqual( fed_avg_local_adaptivity._get_optimizer_momentum_beta( yogi.Yogi(beta1=0.8)), 0.8)
def test_sharing(self, dtype): if tf.test.is_gpu_available() and dtype is tf.dtypes.half: return # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 1.0, 0.0, 1.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = tf.Variable(var0_np) var1 = tf.Variable(var1_np) grads0 = tf.constant(grads0_np) grads1 = tf.constant(grads1_np) opt = yogi.Yogi() if not tf.executing_eagerly(): update1 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) update2 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) self.evaluate(tf.compat.v1.global_variables_initializer()) # Fetch params to validate initial values. self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 3 steps of intertwined Yogi1 and Yogi2. for t in range(1, 4): beta1_power, beta2_power = get_beta_accumulators(opt, dtype) self.assertAllCloseAccordingToType(0.9**t, self.evaluate(beta1_power)) self.assertAllCloseAccordingToType(0.999**t, self.evaluate(beta2_power)) if not tf.executing_eagerly(): if t % 2 == 0: self.evaluate(update1) else: self.evaluate(update2) else: opt.apply_gradients(zip([grads0, grads1], [var0, var1])) var0_np, m0, v0 = yogi_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = yogi_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params. self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
def do_test_sparse(self, dtype, beta1=0.0, l1reg=0.0, l2reg=0.0): if tf.test.is_gpu_available() and dtype is tf.dtypes.half: return # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 1.0, 0.0, 1.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = tf.Variable(var0_np) var1 = tf.Variable(var1_np) grads0_np_indices = np.array([0, 1], dtype=np.int32) grads0 = tf.IndexedSlices(tf.constant(grads0_np), tf.constant(grads0_np_indices), tf.constant([2])) grads1_np_indices = np.array([0, 1], dtype=np.int32) grads1 = tf.IndexedSlices(tf.constant(grads1_np), tf.constant(grads1_np_indices), tf.constant([2])) opt = yogi.Yogi(beta1=beta1, l1_regularization_strength=l1reg, l2_regularization_strength=l2reg) if not tf.executing_eagerly(): update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) self.evaluate(tf.compat.v1.global_variables_initializer()) # Fetch params to validate initial values. self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 3 steps of Yogi. for t in range(1, 4): beta1_power, beta2_power = get_beta_accumulators(opt, dtype) self.assertAllCloseAccordingToType(beta1**t, self.evaluate(beta1_power)) self.assertAllCloseAccordingToType(0.999**t, self.evaluate(beta2_power)) if not tf.executing_eagerly(): self.evaluate(update) else: opt.apply_gradients(zip([grads0, grads1], [var0, var1])) var0_np, m0, v0 = yogi_update_numpy(var0_np, grads0_np, t, m0, v0, beta1=beta1, l1reg=l1reg, l2reg=l2reg) var1_np, m1, v1 = yogi_update_numpy(var1_np, grads1_np, t, m1, v1, beta1=beta1, l1reg=l1reg, l2reg=l2reg) # Validate updated params. self.assertAllCloseAccordingToType( var0_np, self.evaluate(var0), msg='Updated params 0 do not match in NP and TF') self.assertAllCloseAccordingToType( var1_np, self.evaluate(var1), msg='Updated params 1 do not match in NP and TF')
def test_get_config(self): opt = yogi.Yogi(1e-4) config = opt.get_config() self.assertEqual(config['learning_rate'], 1e-4)