def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] masked_lm_positions = features["masked_lm_positions"] masked_lm_ids = features["masked_lm_ids"] masked_lm_weights = features["masked_lm_weights"] # Note: We keep this feature name `next_sentence_labels` to be compatible # with the original data created by lanzhzh@. However, in the ALBERT case # it does represent sentence_order_labels. sentence_order_labels = features["next_sentence_labels"] is_training = (mode == tf.estimator.ModeKeys.TRAIN) model = modeling.AlbertModel( config=albert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) (masked_lm_loss, masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output( albert_config, model.get_sequence_output(), model.get_embedding_table(), masked_lm_positions, masked_lm_ids, masked_lm_weights) (sentence_order_loss, sentence_order_example_loss, sentence_order_log_probs) = get_sentence_order_output( albert_config, model.get_pooled_output(), sentence_order_labels) total_loss = masked_lm_loss + sentence_order_loss tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: tf.logging.info("number of hidden group %d to initialize", albert_config.num_hidden_groups) num_of_initialize_group = 1 if FLAGS.init_from_group0: num_of_initialize_group = albert_config.num_hidden_groups if albert_config.net_structure_type > 0: num_of_initialize_group = albert_config.num_hidden_layers (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint( tvars, init_checkpoint, num_of_initialize_group) if use_tpu: def tpu_scaffold(): for gid in range(num_of_initialize_group): tf.logging.info("initialize the %dth layer", gid) tf.logging.info(assignment_map[gid]) tf.train.init_from_checkpoint(init_checkpoint, assignment_map[gid]) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: for gid in range(num_of_initialize_group): tf.logging.info("initialize the %dth layer", gid) tf.logging.info(assignment_map[gid]) tf.train.init_from_checkpoint(init_checkpoint, assignment_map[gid]) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: train_op = optimization.create_optimizer(total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu, optimizer, poly_power, start_warmup_step) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(*args): """Computes the loss and accuracy of the model.""" (masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids, masked_lm_weights, sentence_order_example_loss, sentence_order_log_probs, sentence_order_labels) = args[:7] masked_lm_log_probs = tf.reshape( masked_lm_log_probs, [-1, masked_lm_log_probs.shape[-1]]) masked_lm_predictions = tf.argmax(masked_lm_log_probs, axis=-1, output_type=tf.int32) masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1]) masked_lm_ids = tf.reshape(masked_lm_ids, [-1]) masked_lm_weights = tf.reshape(masked_lm_weights, [-1]) masked_lm_accuracy = tf.metrics.accuracy( labels=masked_lm_ids, predictions=masked_lm_predictions, weights=masked_lm_weights) masked_lm_mean_loss = tf.metrics.mean( values=masked_lm_example_loss, weights=masked_lm_weights) metrics = { "masked_lm_accuracy": masked_lm_accuracy, "masked_lm_loss": masked_lm_mean_loss, } sentence_order_log_probs = tf.reshape( sentence_order_log_probs, [-1, sentence_order_log_probs.shape[-1]]) sentence_order_predictions = tf.argmax( sentence_order_log_probs, axis=-1, output_type=tf.int32) sentence_order_labels = tf.reshape(sentence_order_labels, [-1]) sentence_order_accuracy = tf.metrics.accuracy( labels=sentence_order_labels, predictions=sentence_order_predictions) sentence_order_mean_loss = tf.metrics.mean( values=sentence_order_example_loss) metrics.update({ "sentence_order_accuracy": sentence_order_accuracy, "sentence_order_loss": sentence_order_mean_loss }) return metrics metric_values = [ masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids, masked_lm_weights, sentence_order_example_loss, sentence_order_log_probs, sentence_order_labels ] eval_metrics = (metric_fn, metric_values) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, eval_metrics=eval_metrics, scaffold_fn=scaffold_fn) else: raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode)) return output_spec
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] masked_lm_positions = features["masked_lm_positions"] masked_lm_ids = features["masked_lm_ids"] masked_lm_weights = features["masked_lm_weights"] is_training = (mode == tf.estimator.ModeKeys.TRAIN) model = modeling.BertModel( config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) (masked_lm_loss, masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(bert_config, model.get_sequence_output(), model.get_embedding_table(), masked_lm_positions, masked_lm_ids, masked_lm_weights) total_loss = masked_lm_loss total_loss = total_loss / num_gpu tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu, optimizer, poly_power, start_warmup_step) output_spec = tf.estimator.EstimatorSpec(mode, loss=total_loss, train_op=train_op) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(*args): """Computes the loss and accuracy of the model.""" (masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids, masked_lm_weights, sentence_order_example_loss, sentence_order_log_probs, sentence_order_labels) = args[:7] masked_lm_log_probs = tf.reshape(masked_lm_log_probs, [-1, masked_lm_log_probs.shape[-1]]) masked_lm_predictions = tf.argmax( masked_lm_log_probs, axis=-1, output_type=tf.int32) masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1]) masked_lm_ids = tf.reshape(masked_lm_ids, [-1]) masked_lm_weights = tf.reshape(masked_lm_weights, [-1]) masked_lm_accuracy = tf.metrics.accuracy( labels=masked_lm_ids, predictions=masked_lm_predictions, weights=masked_lm_weights) masked_lm_mean_loss = tf.metrics.mean( values=masked_lm_example_loss, weights=masked_lm_weights) metrics = { "masked_lm_accuracy": masked_lm_accuracy, "masked_lm_loss": masked_lm_mean_loss, } return metrics metric_values = [ masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids, masked_lm_weights ] eval_metrics = (metric_fn, metric_values) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, eval_metrics=eval_metrics, scaffold_fn=scaffold_fn) else: raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode)) return output_spec
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] label_ids = features["label_ids"] is_real_example = None if "is_real_example" in features: is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32) else: is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32) is_training = (mode == tf.estimator.ModeKeys.TRAIN) (total_loss, per_example_loss, probabilities, predictions) = \ create_model(albert_config, is_training, input_ids, input_mask, segment_ids, label_ids, num_labels, use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint( tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: train_op = optimization.create_optimizer(total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(per_example_loss, label_ids, predictions, is_real_example): accuracy = tf.metrics.accuracy(labels=label_ids, predictions=predictions, weights=is_real_example) loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example) return { "eval_accuracy": accuracy, "eval_loss": loss, } eval_metrics = (metric_fn, [ per_example_loss, label_ids, predictions, is_real_example ]) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, eval_metrics=eval_metrics, scaffold_fn=scaffold_fn) else: output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions={ "probabilities": probabilities, "predictions": predictions }, scaffold_fn=scaffold_fn) return output_spec
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) a_input_ids = features["a_input_ids"] a_input_mask = features["a_input_mask"] a_segment_ids = features["a_segment_ids"] b_input_ids = features["b_input_ids"] b_input_mask = features["b_input_mask"] b_segment_ids = features["b_segment_ids"] label_ids = features["label_ids"] is_real_example = None if "is_real_example" in features: is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32) else: is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32) is_training = (mode == tf.estimator.ModeKeys.TRAIN) (a_output_layer, total_loss, predictions) = \ create_model(albert_config, is_training, a_input_ids, a_input_mask, a_segment_ids, b_input_ids, b_input_mask, b_segment_ids, label_ids, num_labels, use_one_hot_embeddings) tvars = tf.trainable_variables() #import pdb #pdb.set_trace() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None #import pdb #pdb.set_trace() if mode == tf.estimator.ModeKeys.TRAIN: train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.EVAL: #import pdb #pdb.set_trace() def metric_fn(label_ids, predictions, is_real_example): from tensorflow.contrib.metrics import streaming_pearson_correlation eval_pearson_cosine = streaming_pearson_correlation(predictions, label_ids) return { "eval_pearson_cosine": eval_pearson_cosine } eval_metrics = (metric_fn, [label_ids, predictions, is_real_example]) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, eval_metrics=eval_metrics, scaffold_fn=scaffold_fn) else: #import pdb #pdb.set_trace() output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions={"a_output_layer": a_output_layer}, scaffold_fn=scaffold_fn) return output_spec