示例#1
0
class Trainer(object):
    def __init__(self, args):
        super(Trainer, self).__init__()
        self.args = args
        if cfg.SEED > 0:
            np.random.seed(int(cfg.SEED))
            random.seed(cfg.SEED)
            torch.manual_seed(cfg.SEED)
            torch.cuda.manual_seed_all(cfg.SEED)

        self.setup_logging()
        self.setup_dataset()
        self.setup_network()
        self.val_evaler = Evaler(eval_ids=cfg.DATA_LOADER.VAL_ID,
                                 gv_feat=cfg.DATA_LOADER.VAL_GV_FEAT,
                                 att_feats=cfg.DATA_LOADER.VAL_ATT_FEATS,
                                 eval_annfile=cfg.INFERENCE.VAL_ANNFILE)
        self.test_evaler = Evaler(eval_ids=cfg.DATA_LOADER.TEST_ID,
                                  gv_feat=cfg.DATA_LOADER.TEST_GV_FEAT,
                                  att_feats=cfg.DATA_LOADER.TEST_ATT_FEATS,
                                  eval_annfile=cfg.INFERENCE.TEST_ANNFILE)
        self.scorer = Scorer()
        self._init_ppo()

    def _init_ppo(self):
        self.nenvs = 4 * cfg.TRAIN.BATCH_SIZE
        self.noptepochs = 1
        self.envsperbatch = cfg.TRAIN.BATCH_SIZE
        self.clip_range = 0.1
        assert self.nenvs % cfg.TRAIN.BATCH_SIZE == 0
        self.batch_next = None

        self.mv_approxkl = 0
        self.mv_violate = 0
        self.mv_entropy = 0
        self.mv_total = 0

    def setup_logging(self):
        self.logger = logging.getLogger(cfg.LOGGER_NAME)
        self.logger.setLevel(logging.INFO)

        ch = logging.StreamHandler(stream=sys.stdout)
        ch.setLevel(logging.INFO)
        formatter = logging.Formatter(
            "[%(levelname)s: %(asctime)s] %(message)s")
        ch.setFormatter(formatter)
        self.logger.addHandler(ch)

        if not os.path.exists(cfg.ROOT_DIR):
            os.makedirs(cfg.ROOT_DIR)

        fh = logging.FileHandler(
            os.path.join(cfg.ROOT_DIR, cfg.LOGGER_NAME + '.txt'))
        fh.setLevel(logging.INFO)
        fh.setFormatter(formatter)
        self.logger.addHandler(fh)

        self.logger.info('Training with config:')
        self.logger.info(pprint.pformat(cfg))

    def setup_network(self):
        model = models.create(cfg.MODEL.TYPE)
        self.trainer = model.cuda()

        self.checkpointer = CaptionCheckpointer(
            self.trainer, os.path.join(cfg.ROOT_DIR, "snapshot"))

        if self.args.resume > 0:
            self.checkpointer.load(
                self.snapshot_path("caption_model", self.args.resume))
        self.predictor = models.create(cfg.MODEL.TYPE).cuda()
        self.predictor.load_state_dict(self.trainer.state_dict())

        self.optim = Optimizer(self.trainer)

    def setup_dataset(self):
        self.coco_set = datasets.coco_dataset.CocoDataset(
            image_ids_path=cfg.DATA_LOADER.TRAIN_ID,
            input_seq=cfg.DATA_LOADER.INPUT_SEQ_PATH,
            target_seq=cfg.DATA_LOADER.TARGET_SEQ_PATH,
            gv_feat_path=cfg.DATA_LOADER.TRAIN_GV_FEAT,
            att_feats_folder=cfg.DATA_LOADER.TRAIN_ATT_FEATS,
            seq_per_img=1,
            max_feat_num=cfg.DATA_LOADER.MAX_FEAT)

    def setup_loader(self, epoch):
        self.training_loader = datasets.data_loader.load_train(
            False, epoch, self.coco_set)

    def snapshot_path(self, name, epoch):
        snapshot_folder = os.path.join(cfg.ROOT_DIR, 'snapshot')
        return os.path.join(snapshot_folder, name + "_" + str(epoch) + ".pth")

    def save_model(self, iteration):
        snapshot_folder = os.path.join(cfg.ROOT_DIR, 'snapshot')
        if not os.path.exists(snapshot_folder):
            os.mkdir(snapshot_folder)
        torch.save(self.trainer.state_dict(),
                   self.snapshot_path("caption_model", iteration))

    def get_batch(self):
        epoch = 0
        while True:
            self.setup_loader(epoch)
            for x in self.training_loader:
                yield epoch, x
            epoch += 1

    def _set_kwargs(self, kwargs, repeat_factor):
        # sample
        kwargs['GREEDY_DECODE'] = False
        kwargs["NEED_PD"] = True
        kwargs["REPEAT_FACTOR"] = repeat_factor

        return kwargs

    def _prefix_rewards(self, kwargs, seq_prefix):
        kwargs[cfg.PARAM.MAX_GEN_LEN] = seq_prefix.shape[-1]
        kwargs[cfg.PARAM.GEN_RESULT] = utils.expand_tensor(seq_prefix, 5)
        with torch.no_grad():
            seq_sample = self.predictor.extend_trajectory(
                **kwargs).detach().cpu().numpy().tolist()
        return seq_sample

    def _sample_trajectory(self, kwargs):
        self._set_kwargs(kwargs, 1)
        with torch.no_grad():
            seq_sample, log_prob_sample = self.predictor.decode(**kwargs)
            seq_sample_list = seq_sample.detach().cpu().numpy().tolist()
            log_prob_sample, seq_sample = [
                _.detach().cpu().numpy()
                for _ in [log_prob_sample, seq_sample]
            ]
        indices = kwargs[cfg.PARAM.INDICES]
        rewards_sample, _ = self.scorer(indices, seq_sample_list)

        repeat_factor = 5
        kwargs = self._set_kwargs(kwargs, repeat_factor)
        kwargs['gx'], kwargs['encoder_out'], kwargs['p_att_feats'] , kwargs['att_mask']= \
                self.predictor.init_gx_encoder_out_p_att_feats_att_mask(**kwargs)
        indices = utils.expand_numpy(kwargs[cfg.PARAM.INDICES], repeat_factor)
        advs = np.zeros_like(seq_sample, dtype=np.float32)
        for k in range(cfg.MODEL.SEQ_LEN):
            baseline, _ = self.scorer(
                indices,
                self._prefix_rewards(
                    kwargs,
                    torch.from_numpy(seq_sample[:, :k]).cuda()))
            baseline = baseline.reshape(-1, repeat_factor)
            advs[:, k] = rewards_sample - baseline.mean(-1)
            if seq_sample[:, k].sum() == 0:
                break

        seq_sample = seq_sample[:, None, :]
        advs = np.clip(advs[:, None, :], -1, 1)
        #advs = advs[:, None, :]
        log_prob_sample = log_prob_sample[:, None, ...]
        return seq_sample, log_prob_sample, advs

    def runner_run(self, iteration):
        mb_indices = []
        mb_gv_feat = []
        mb_att_feats = []
        mb_att_mask = []

        mb_sample_logprobs = []
        mb_gen_result = []
        mb_advs = []

        for _ in range(self.nenvs // cfg.TRAIN.BATCH_SIZE):
            # data - indices, input_seq, target_seq, gv_feat, att_feats, att_mask
            epoch, data = next(self.batch_next)
            iteration += 1

            indices = data[0]
            mb_indices.append(indices.reshape(-1, 1))
            for x, y in zip(data[-3:],
                            [mb_gv_feat, mb_att_feats, mb_att_mask]):
                y.append(x.numpy())

            gv_feat, att_feats, att_mask = [_.cuda() for _ in data[-3:]]

            kwargs = {
                cfg.PARAM.INDICES: indices,
                cfg.PARAM.GLOBAL_FEAT: gv_feat,
                cfg.PARAM.ATT_FEATS: att_feats,
                cfg.PARAM.ATT_FEATS_MASK: att_mask
            }
            seq_sample, log_prob_sample, rewards = self._sample_trajectory(
                kwargs)
            trajectory = [log_prob_sample, seq_sample, rewards]
            for x, y in zip(trajectory,
                            [mb_sample_logprobs, mb_gen_result, mb_advs]):
                y.append(x)

        max_att_num = np.max([_.shape[1] for _ in mb_att_feats])
        for k, x in enumerate(mb_att_feats):
            after = max_att_num - x.shape[1]
            mb_att_feats[k] = np.pad(x, ((0, 0), (0, after), (0, 0)),
                                     mode="constant")
            mb_att_mask[k] = np.pad(mb_att_mask[k], ((0, 0), (0, after)),
                                    mode="constant")

        mb_indices, mb_gv_feat, mb_att_feats, mb_att_mask, \
        mb_sample_logprobs, mb_gen_result, mb_advs = [np.vstack(_) for _ in [
            mb_indices, mb_gv_feat, mb_att_feats, mb_att_mask,
            mb_sample_logprobs, mb_gen_result, mb_advs
        ]]

        return iteration, epoch, [
            mb_indices, mb_gv_feat, mb_att_feats, mb_att_mask,
            mb_sample_logprobs, mb_gen_result, mb_advs
        ]

    def mb_train(self, kwargs):
        kwargs = self._set_kwargs(kwargs, 1)
        _, neglogpac = self.trainer.decode(**kwargs)

        sample_logprobs, gen_result, advs = [
            kwargs[_] for _ in
            [cfg.PARAM.SAMPLE_LOGPROBS, cfg.PARAM.GEN_RESULT, cfg.PARAM.ADVS]
        ]

        trajectory = [sample_logprobs, gen_result, advs]
        for k, _ in enumerate(trajectory):
            trajectory[k] = _.view(-1, *_.shape[2:])
        sample_logprobs, gen_result, advs = trajectory

        mask = gen_result > 0
        mask = torch.cat(
            [mask.new_full((mask.shape[0], 1), True), mask[:, :-1]], 1)

        kl_div = torch.exp(sample_logprobs) * (sample_logprobs - neglogpac)
        kl_div = kl_div.sum(-1)
        kl_div = torch.masked_select(kl_div, mask)
        entropy = torch.sum(torch.exp(neglogpac) * (-neglogpac), dim=-1)
        entropy = entropy[mask].mean()
        neglogpac = torch.gather(neglogpac, 2,
                                 gen_result.unsqueeze(-1)).squeeze(-1)

        sample_logprobs = torch.gather(sample_logprobs, 2,
                                       gen_result.unsqueeze(-1)).squeeze(-1)
        advs_close_zero = (-1e-5 < advs) & (advs < 1e-5)
        mask &= ~advs_close_zero
        neglogpac = -torch.masked_select(neglogpac, mask)
        oldneglogpac = -torch.masked_select(sample_logprobs, mask)
        advs = torch.masked_select(advs, mask)

        ratio = torch.exp(oldneglogpac - neglogpac)
        pg_losses = -advs * ratio
        pg_losses2 = -advs * torch.clamp(ratio, 1.0 - self.clip_range,
                                         1.0 + self.clip_range)
        self.mv_total = 0.9 * self.mv_total + 0.1 * pg_losses.shape[0]
        pg_loss = torch.max(pg_losses,
                            pg_losses2).sum() / (cfg.TRAIN.BATCH_SIZE * 16)
        mask_positive = (advs > 0) & (ratio > 1 + self.clip_range)
        mask_negative = (advs < 0) & (ratio < 1 - self.clip_range)
        mask_total = mask_positive | mask_negative
        kl_div = kl_div.mean()

        loss = pg_loss
        self.mv_approxkl = 0.9 * self.mv_approxkl + 0.1 * kl_div.item()
        self.mv_entropy = 0.9 * self.mv_entropy + 0.1 * entropy.item()
        self.mv_violate = 0.9 * self.mv_violate + 0.1 * mask_total.sum().item()

        return loss

    def train(self):
        self.batch_next = self.get_batch()
        # eval - crucial to disable dropout
        self.trainer.eval()
        self.predictor.eval()

        epoch, iteration = 0, 0
        val_current = None
        val_best = self._compute_val(iteration)
        self.logger.info("val @iteration 0: {}".format(val_best))
        while True:
            iteration, epoch, data = self.runner_run(iteration)

            envinds = np.arange(self.nenvs)
            for _ in range(self.noptepochs):
                np.random.shuffle(envinds)
                for start in range(0, self.nenvs, self.envsperbatch):
                    end = start + self.envsperbatch
                    mbenvinds = envinds[start:end]
                    indices = data[0][mbenvinds].reshape(-1)
                    gv_feat, att_feats, att_mask, sample_logprobs, gen_result, advs = \
                        [torch.from_numpy(x).cuda()
                         for x in [_[mbenvinds] for _ in data[1:]]]

                    kwargs = {
                        cfg.PARAM.INDICES: indices,
                        cfg.PARAM.GLOBAL_FEAT: gv_feat,
                        cfg.PARAM.ATT_FEATS: att_feats,
                        cfg.PARAM.ATT_FEATS_MASK: att_mask,
                        cfg.PARAM.SAMPLE_LOGPROBS: sample_logprobs,
                        cfg.PARAM.GEN_RESULT: gen_result,
                        cfg.PARAM.ADVS: advs
                    }
                    loss = self.mb_train(kwargs)
                    self.optim.zero_grad()
                    loss.backward()
                    #torch.nn.utils.clip_grad_norm_(self.trainer.parameters(), 0.5, 2)
                    self.optim.step()
                    time.sleep(1)

            if iteration % 64 == 0:
                self.predictor.load_state_dict(self.trainer.state_dict())
                val_current = self._compute_val(iteration)
                if val_best is None:
                    val_best = val_current

                self.logger.info(
                    "val_current @iteration {}: {}, val_predictor: {}".format(
                        iteration, val_current, val_best))
                self.logger.info("mv_approxkl: {}".format(self.mv_approxkl))
                self.logger.info("mv_entropy: {}".format(self.mv_entropy))
                self.logger.info("mv_violate: {}".format(self.mv_violate))
                self.logger.info("mv_total: {}".format(self.mv_total))

                if val_best <= val_current:
                    self.save_model(23)
                    val_best = val_current
            if iteration == 3584:
                break

    def _compute_val(self, iteration):
        val_res = self.val_evaler(self.trainer, 'val_' + str(iteration), 1)
        val = 0
        for score_type, weight in zip(cfg.SCORER.TYPES, cfg.SCORER.WEIGHTS):
            # plus!!!
            val += val_res[score_type] * weight

        test_res = self.test_evaler(self.trainer, 'test_' + str(iteration), 2)
        self.logger.info('######## Iter (TEST) ' + str(iteration) +
                         ' ########')
        self.logger.info(str(test_res))

        # crucial!
        self.trainer.eval()
        return val
示例#2
0
class Trainer(object):
    def __init__(self, args):
        super(Trainer, self).__init__()
        self.args = args
        if cfg.SEED > 0:
            random.seed(cfg.SEED)
            torch.manual_seed(cfg.SEED)
            torch.cuda.manual_seed_all(cfg.SEED)

        self.num_gpus = torch.cuda.device_count()
        self.distributed = self.num_gpus > 1
        if self.distributed:
            torch.cuda.set_device(args.local_rank)
            torch.distributed.init_process_group(
                backend="nccl", init_method="env://"
            )
        self.device = torch.device("cuda")

        self.rl_stage = False
        self.setup_logging()
        self.setup_dataset()
        self.setup_network()
        self.val_evaler = Evaler(
            eval_ids = cfg.DATA_LOADER.VAL_ID,
            gv_feat = cfg.DATA_LOADER.VAL_GV_FEAT,
            att_feats = cfg.DATA_LOADER.VAL_ATT_FEATS,
            eval_annfile = cfg.INFERENCE.VAL_ANNFILE
        )
        self.test_evaler = Evaler(
            eval_ids = cfg.DATA_LOADER.TEST_ID,
            gv_feat = cfg.DATA_LOADER.TEST_GV_FEAT,
            att_feats = cfg.DATA_LOADER.TEST_ATT_FEATS,
            eval_annfile = cfg.INFERENCE.TEST_ANNFILE
        )
        self.scorer = Scorer()

    def setup_logging(self):
        self.logger = logging.getLogger(cfg.LOGGER_NAME)
        self.logger.setLevel(logging.INFO)
        if self.distributed and dist.get_rank() > 0:
            return
        
        ch = logging.StreamHandler(stream=sys.stdout)
        ch.setLevel(logging.INFO)
        formatter = logging.Formatter("[%(levelname)s: %(asctime)s] %(message)s")
        ch.setFormatter(formatter)
        self.logger.addHandler(ch)

        if not os.path.exists(cfg.ROOT_DIR):
            os.makedirs(cfg.ROOT_DIR)
        
        fh = logging.FileHandler(os.path.join(cfg.ROOT_DIR, cfg.LOGGER_NAME + '.txt'))
        fh.setLevel(logging.INFO)
        fh.setFormatter(formatter)
        self.logger.addHandler(fh)
        
        self.logger.info('Training with config:')
        self.logger.info(pprint.pformat(cfg))

    def setup_network(self):
        model = models.create(cfg.MODEL.TYPE)

        if self.distributed:
            # this should be removed if we update BatchNorm stats
            self.model = torch.nn.parallel.DistributedDataParallel(
                model.to(self.device), 
                device_ids = [self.args.local_rank], 
                output_device = self.args.local_rank,
                broadcast_buffers = False
            )
        else:
            self.model = torch.nn.DataParallel(model).cuda()

        if self.args.resume > 0:
            self.model.load_state_dict(
                torch.load(self.snapshot_path("caption_model", self.args.resume),
                    map_location=lambda storage, loc: storage)
            )

        self.optim = Optimizer(self.model)
        self.xe_criterion = losses.create(cfg.LOSSES.XE_TYPE).cuda()
        self.rl_criterion = losses.create(cfg.LOSSES.RL_TYPE).cuda()
        
    def setup_dataset(self):
        self.coco_set = datasets.coco_dataset.CocoDataset(            
            image_ids_path = cfg.DATA_LOADER.TRAIN_ID, 
            input_seq = cfg.DATA_LOADER.INPUT_SEQ_PATH, 
            target_seq = cfg.DATA_LOADER.TARGET_SEQ_PATH,
            gv_feat_path = cfg.DATA_LOADER.TRAIN_GV_FEAT, 
            att_feats_folder = cfg.DATA_LOADER.TRAIN_ATT_FEATS, 
            seq_per_img = cfg.DATA_LOADER.SEQ_PER_IMG,
            max_feat_num = cfg.DATA_LOADER.MAX_FEAT
        )

    def setup_loader(self, epoch):
        self.training_loader = datasets.data_loader.load_train(
            self.distributed, epoch, self.coco_set)

    def eval(self, epoch):
        if (epoch + 1) % cfg.SOLVER.TEST_INTERVAL != 0:
            return None
        if self.distributed and dist.get_rank() > 0:
            return None
            
        val_res = self.val_evaler(self.model, 'val_' + str(epoch + 1))
        self.logger.info('######## Epoch (VAL)' + str(epoch + 1) + ' ########')
        self.logger.info(str(val_res))

        test_res = self.test_evaler(self.model,'test_' + str(epoch + 1))
        self.logger.info('######## Epoch (TEST)' + str(epoch + 1) + ' ########')
        self.logger.info(str(test_res))

        val = 0
        for score_type, weight in zip(cfg.SCORER.TYPES, cfg.SCORER.WEIGHTS):
            val -= val_res[score_type] * weight
        return val

    def snapshot_path(self, name, epoch):
        snapshot_folder = os.path.join(cfg.ROOT_DIR, 'snapshot')
        return os.path.join(snapshot_folder, name + "_" + str(epoch) + ".pth")

    def save_model(self, epoch):
        if (epoch + 1) % cfg.SOLVER.SNAPSHOT_ITERS != 0:
            return
        if self.distributed and dist.get_rank() > 0:
            return
        snapshot_folder = os.path.join(cfg.ROOT_DIR, 'snapshot')
        if not os.path.exists(snapshot_folder):
            os.mkdir(snapshot_folder)
        torch.save(self.model.state_dict(), self.snapshot_path("caption_model", epoch+1))

    def make_kwargs(self, indices, input_seq, target_seq, gv_feat, att_feats, att_mask):
        seq_mask = (input_seq > 0).type(torch.cuda.LongTensor)
        seq_mask[:,0] += 1
        seq_mask_sum = seq_mask.sum(-1)
        max_len = int(seq_mask_sum.max())
        input_seq = input_seq[:, 0:max_len].contiguous()
        target_seq = target_seq[:, 0:max_len].contiguous()

        kwargs = {
            cfg.PARAM.INDICES: indices,
            cfg.PARAM.INPUT_SENT: input_seq,
            cfg.PARAM.TARGET_SENT: target_seq,
            cfg.PARAM.GLOBAL_FEAT: gv_feat,
            cfg.PARAM.ATT_FEATS: att_feats,
            cfg.PARAM.ATT_FEATS_MASK: att_mask
        }
        return kwargs

    def scheduled_sampling(self, epoch):
        if epoch > cfg.TRAIN.SCHEDULED_SAMPLING.START:
            frac = (epoch - cfg.TRAIN.SCHEDULED_SAMPLING.START) // cfg.TRAIN.SCHEDULED_SAMPLING.INC_EVERY
            ss_prob = min(cfg.TRAIN.SCHEDULED_SAMPLING.INC_PROB * frac, cfg.TRAIN.SCHEDULED_SAMPLING.MAX_PROB)
            self.model.module.ss_prob = ss_prob

    def display(self, iteration, data_time, batch_time, losses, loss_info):
        if iteration % cfg.SOLVER.DISPLAY != 0:
            return
        if self.distributed and dist.get_rank() > 0:
            return
        info_str = ' (DataTime/BatchTime: {:.3}/{:.3}) losses = {:.5}'.format(data_time.avg, batch_time.avg, losses.avg)
        self.logger.info('Iteration ' + str(iteration) + info_str +', lr = ' +  str(self.optim.get_lr()))
        for name in sorted(loss_info):
            self.logger.info('  ' + name + ' = ' + str(loss_info[name]))
        data_time.reset()
        batch_time.reset()
        losses.reset()

    def forward(self, kwargs):
        if self.rl_stage == False:
            logit = self.model(**kwargs)
            loss, loss_info = self.xe_criterion(logit, kwargs[cfg.PARAM.TARGET_SENT])
        else:
            ids = kwargs[cfg.PARAM.INDICES]
            gv_feat = kwargs[cfg.PARAM.GLOBAL_FEAT]
            att_feats = kwargs[cfg.PARAM.ATT_FEATS]
            att_mask = kwargs[cfg.PARAM.ATT_FEATS_MASK]

            # max
            kwargs['BEAM_SIZE'] = 1
            kwargs['GREEDY_DECODE'] = True
            kwargs[cfg.PARAM.GLOBAL_FEAT] = gv_feat
            kwargs[cfg.PARAM.ATT_FEATS] = att_feats
            kwargs[cfg.PARAM.ATT_FEATS_MASK] = att_mask

            self.model.eval()
            with torch.no_grad():
                seq_max, logP_max = self.model.module.decode(**kwargs)
            self.model.train()
            rewards_max, rewards_info_max = self.scorer(ids, seq_max.data.cpu().numpy().tolist())
            rewards_max = utils.expand_numpy(rewards_max)

            ids = utils.expand_numpy(ids)
            gv_feat = utils.expand_tensor(gv_feat, cfg.DATA_LOADER.SEQ_PER_IMG)
            att_feats = utils.expand_tensor(att_feats, cfg.DATA_LOADER.SEQ_PER_IMG)
            att_mask = utils.expand_tensor(att_mask, cfg.DATA_LOADER.SEQ_PER_IMG)

            # sample
            kwargs['BEAM_SIZE'] = 1
            kwargs['GREEDY_DECODE'] = False
            kwargs[cfg.PARAM.GLOBAL_FEAT] = gv_feat
            kwargs[cfg.PARAM.ATT_FEATS] = att_feats
            kwargs[cfg.PARAM.ATT_FEATS_MASK] = att_mask

            seq_sample, logP_sample = self.model.module.decode(**kwargs)
            rewards_sample, rewards_info_sample = self.scorer(ids, seq_sample.data.cpu().numpy().tolist())

            rewards = rewards_sample - rewards_max
            rewards = torch.from_numpy(rewards).float().cuda()
            loss = self.rl_criterion(seq_sample, logP_sample, rewards)
            
            loss_info = {}
            for key in rewards_info_sample:
                loss_info[key + '_sample'] = rewards_info_sample[key]
            for key in rewards_info_max:
                loss_info[key + '_max'] = rewards_info_max[key]

        return loss, loss_info

    def train(self):
        self.model.train()
        self.optim.zero_grad()

        iteration = 0
        for epoch in  range(cfg.SOLVER.MAX_EPOCH):
            if epoch == cfg.TRAIN.REINFORCEMENT.START:
                self.rl_stage = True
            self.setup_loader(epoch)

            start = time.time()
            data_time = AverageMeter()
            batch_time = AverageMeter()
            losses = AverageMeter()
            for _, (indices, input_seq, target_seq, gv_feat, att_feats, att_mask) in enumerate(self.training_loader):
                data_time.update(time.time() - start)

                input_seq = input_seq.cuda()
                target_seq = target_seq.cuda()
                gv_feat = gv_feat.cuda()
                att_feats = att_feats.cuda()
                att_mask = att_mask.cuda()

                kwargs = self.make_kwargs(indices, input_seq, target_seq, gv_feat, att_feats, att_mask)
                loss, loss_info = self.forward(kwargs)
                loss.backward()
                utils.clip_gradient(self.optim.optimizer, self.model,
                    cfg.SOLVER.GRAD_CLIP_TYPE, cfg.SOLVER.GRAD_CLIP)
                self.optim.step()
                self.optim.zero_grad()
                self.optim.scheduler_step('Iter')
                
                batch_time.update(time.time() - start)
                start = time.time()
                losses.update(loss.item())
                self.display(iteration, data_time, batch_time, losses, loss_info)
                iteration += 1

                if self.distributed:
                    dist.barrier()
        
            self.save_model(epoch)
            val = self.eval(epoch)
            self.optim.scheduler_step('Epoch', val)
            self.scheduled_sampling(epoch)

            if self.distributed:
                dist.barrier()
示例#3
0
class Trainer(object):
    def __init__(self, args):
        super(Trainer, self).__init__()
        self.args = args

        self.setup_gpu()
        self.setup_logging()
        self.setup_loader()
        self.setup_network()

    def setup_gpu(self):
        if args.local_rank == -1:
            self.device = torch.device(
                "cuda" if torch.cuda.is_available() else "cpu")
            self.n_gpu = torch.cuda.device_count()
            self.distributed = False
        else:
            torch.cuda.set_device(args.local_rank)
            self.device = torch.device("cuda", args.local_rank)
            self.n_gpu = 1
            torch.distributed.init_process_group(
                backend="nccl",
                init_method="env://",
                timeout=timedelta(minutes=180))
            self.distributed = True
        print("device: {} n_gpu: {}, distributed training: {}".format(
            self.device, self.n_gpu, bool(args.local_rank != -1)))
        if cfg.SEED > 0:
            random.seed(cfg.SEED)
            torch.manual_seed(cfg.SEED)
            torch.cuda.manual_seed_all(cfg.SEED)

    def setup_logging(self):
        self.logger = logging.getLogger(cfg.LOGGER_NAME)
        self.logger.setLevel(logging.INFO)

        if self.distributed and dist.get_rank() > 0:
            return

        ch = logging.StreamHandler(stream=sys.stdout)
        ch.setLevel(logging.INFO)
        formatter = logging.Formatter(
            "[%(levelname)s: %(asctime)s] %(message)s")
        ch.setFormatter(formatter)
        self.logger.addHandler(ch)

        fh = logging.FileHandler(
            os.path.join(cfg.ROOT_DIR, cfg.LOGGER_NAME + '.txt'))
        fh.setLevel(logging.INFO)
        fh.setFormatter(formatter)
        self.logger.addHandler(fh)

        self.logger.info('Training with config:')
        self.logger.info(pprint.pformat(cfg))

    def setup_loader(self):
        self.tokenizer = BertTokenizer.from_pretrained(
            cfg.TRAIN.BERT_MODEL, do_lower_case=cfg.TRAIN.DO_LOWER_CASE)
        self.train_dataset_loader, self.train_dataset, self.train_sampler = load_concap_train(
            args.local_rank, self.tokenizer)

    def setup_network(self):
        config = BertConfig.from_json_file(cfg.CONFIG_FILE)
        if cfg.TRAIN.FROM_PRETRAINED:
            model = BaseBertPreTraining.from_pretrained(
                cfg.TRAIN.FROM_PRETRAINED, config)
        else:
            model = BaseBertPreTraining(config)
        model.to(self.device)

        if args.local_rank != -1:
            self.model = torch.nn.parallel.DistributedDataParallel(
                model,
                find_unused_parameters=True,
                device_ids=[self.args.local_rank],
                output_device=self.args.local_rank,
                broadcast_buffers=False)
        elif self.n_gpu > 1:
            self.model = torch.nn.DataParallel(model)
        else:
            self.model = model

        epoch_steps = len(self.train_dataset_loader)
        n_steps = epoch_steps * cfg.SOLVER.NUM_TRAIN_EPOCHS
        self.optim = Optimizer(self.model,
                               epoch_steps=epoch_steps,
                               n_steps=n_steps)

    def display(self, iteration, batch_time, losses, loss_info):
        if iteration % cfg.SOLVER.DISPLAY != 0:
            return
        if self.distributed and dist.get_rank() > 0:
            return

        info_str = ' (BatchTime: {:.3}) losses = {:.5}'.format(
            batch_time.avg, losses.avg)
        self.logger.info('Iteration ' + str(iteration) + info_str + ', lr = ' +
                         str(self.optim.get_lr()))
        for name in sorted(loss_info):
            self.logger.info('  ' + name + ' = ' + str(loss_info[name]))

        batch_time.reset()
        losses.reset()

    def snapshot_path(self, name, epoch):
        snapshot_folder = os.path.join(cfg.ROOT_DIR, 'snapshot')
        return os.path.join(snapshot_folder, name + "_" + str(epoch) + ".bin")

    def save_model(self, epoch):
        if (epoch + 1) % cfg.SOLVER.SNAPSHOT_ITERS != 0:
            return
        if self.distributed and dist.get_rank() > 0:
            return
        snapshot_folder = os.path.join(cfg.ROOT_DIR, 'snapshot')
        if not os.path.exists(snapshot_folder):
            os.mkdir(snapshot_folder)

        model_to_save = (self.model.module
                         if hasattr(self.model, "module") else self.model)
        torch.save(model_to_save.state_dict(),
                   self.snapshot_path("pytorch_model", epoch + 1))

    def train(self):
        max_num_iter = len(self.train_dataset_loader)
        for epochId in range(int(cfg.SOLVER.NUM_TRAIN_EPOCHS)):
            if self.train_sampler is not None:
                self.train_sampler.set_epoch(epochId)

            self.model.train()
            start = time.time()
            batch_time = AverageMeter()

            for step, batch in enumerate(self.train_dataset_loader):
                iterId = step + (epochId * max_num_iter)

                self.optim.zero_grad()
                batch = tuple(
                    t.cuda(device=self.device, non_blocking=True)
                    for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids, image_feat, \
                    image_loc, imgfeat_cls_prob, imgfeat_label, imgfeat_mask = (batch)

                # TODO Train model

            self.save_model(epochId)
            if self.distributed:
                dist.barrier()