def main(argv): # Select optimizers # "SSA","PSO","GA","BAT","FFA","GWO","WOA","MVO","MFO","CS","HHO","SCA","JAYA","DE" optimizer = ["SSA", "PSO", "GWO"] # Select benchmark function" # "F1","F2","F3","F4","F5","F6","F7","F8","F9","F10","F11","F12","F13","F14","F15","F16","F17","F18","F19" # "Ca1","Ca2","Gt1","Mes","Mef","Sag","Tan","Ros" objectiveFuncs = ["F3", "F4"] # Select number of repetitions for each experiment. # To obtain meaningful statistical results, usually 30 independent runs are executed for each algorithm. NumOfRuns = 3 # Select general parameters for all optimizers (population size, number of iterations) .... params = {"populationSize": 30, "iterations": 50} # Choose whether to Export the results in different formats exportFlags = { "exportAvg": True, "exportDetails": True, "exportConvergence": True, "exportBoxplot": True, } run(optimizer, objectiveFuncs, NumOfRuns, params, exportFlags)
# Select optimizers # "SSA","PSO","GA","BAT","FFA","GWO","WOA","MVO","MFO","CS" optimizer = ["SSA", "PSO", "GA", "GWO"] # Select objective function # "SSE","TWCV","SC","DB","DI" objectivefunc = ["SSE", "TWCV"] # Select data sets #"aggregation","aniso","appendicitis","balance","banknote","blobs","Blood","circles","diagnosis_II","ecoli","flame","glass","heart","ionosphere","iris","iris2D","jain","liver","moons","mouse","pathbased","seeds","smiley","sonar","varied","vary-density","vertebral2","vertebral3","wdbc","wine" dataset_List = ["iris", "aggregation"] # Select number of repetitions for each experiment. # To obtain meaningful statistical results, usually 30 independent runs are executed for each algorithm. NumOfRuns = 3 # Select general parameters for all optimizers (population size, number of iterations) .... params = {'PopulationSize': 30, 'Iterations': 50} #Choose whether to Export the results in different formats export_flags = { 'Export_avg': True, 'Export_details': True, 'Export_details_labels': True, 'Export_convergence': True, 'Export_boxplot': True } run(optimizer, objectivefunc, dataset_List, NumOfRuns, params, export_flags)
# -*- coding: utf-8 -*- """ Created on Tue May 17 15:50:25 2016 @author: hossam """ from optimizer import run # Select optimizers # "SSA","PSO","GA","BAT","FFA","GWO","WOA","MVO","MFO","CS","HHO","SCA","JAYA","DE" optimizer=["SSA","PSO","GWO"] # Select benchmark function" # "F1","F2","F3","F4","F5","F6","F7","F8","F9","F10","F11","F12","F13","F14","F15","F16","F17","F18","F19" objectivefunc=["F3","F4"] # Select number of repetitions for each experiment. # To obtain meaningful statistical results, usually 30 independent runs are executed for each algorithm. NumOfRuns=3 # Select general parameters for all optimizers (population size, number of iterations) .... params = {'PopulationSize' : 30, 'Iterations' : 50} #Choose whether to Export the results in different formats export_flags = {'Export_avg':True, 'Export_details':True, 'Export_convergence':True, 'Export_boxplot':True} run(optimizer, objectivefunc, NumOfRuns, params, export_flags)
# Select data sets #"aggregation","aniso","appendicitis","balance","banknote","blobs","Blood","circles","diagnosis_II","ecoli","flame","glass","heart","ionosphere","iris","iris2D","jain","liver","moons","mouse","pathbased","seeds","smiley","sonar","varied","vary-density","vertebral2","vertebral3","wdbc","wine" dataset_List = ["iris", "aggregation"] # Select number of repetitions for each experiment. # To obtain meaningful statistical results, usually 30 independent runs are executed for each algorithm. NumOfRuns = 3 # Select general parameters for all optimizers (population size, number of iterations) .... params = {'PopulationSize': 30, 'Iterations': 50} #Choose whether to Export the results in different formats export_flags = { 'Export_avg': True, 'Export_details': True, 'Export_details_labels': True, 'Export_convergence': True, 'Export_boxplot': True } run(optimizer, objectivefunc, dataset_List, NumOfRuns, params, export_flags, auto_cluster=False, n_clusters=[3, 7], labels_exist=True, metric='cityblock')