示例#1
0
    def forward(self, s0, s1, drop_prob):
        s0 = self.preprocess0(s0)
        s1 = self.preprocess1(s1)

        states = [s0, s1]
        for i in range(self._steps):
            h1 = states[self._indices[2 * i]]
            h2 = states[self._indices[2 * i + 1]]
            op1 = self._ops[2 * i]
            op2 = self._ops[2 * i + 1]
            h1 = op1(h1)
            h2 = op2(h2)
            if self.training and drop_prob > 0.:
                if not isinstance(op1, Identity):
                    h1 = drop_path(h1, drop_prob)
                if not isinstance(op2, Identity):
                    h2 = drop_path(h2, drop_prob)
            s = h1 + h2
            states += [s]
        return torch.cat([states[i] for i in self._concat], dim=1)
示例#2
0
    def forward(self, s0, s1, weights, drop_prob=0.):
        s0 = self.preprocess0(s0)
        s1 = self.preprocess1(s1)

        states = [s0, s1]
        offset = 0
        for i in range(self._steps):
            if drop_prob > 0. and self.training:
                s = sum(
                    drop_path(self._ops[offset + j](h, weights[offset +
                                                               j]), drop_prob)
                    for j, h in enumerate(states))
            else:
                s = sum(self._ops[offset + j](h, weights[offset + j])
                        for j, h in enumerate(states))
            offset += len(states)
            states.append(s)

        return torch.cat(states[-self._multiplier:], dim=1)