def main(argv): del argv # Load the keyboard. keyboard = smart_module.SmartModuleImport(hub.Module(FLAGS.keyboard_path)) # Create the task environment. base_env_config = configs.get_fig4_task_config() base_env = scavenger.Scavenger(**base_env_config) base_env = environment_wrappers.EnvironmentWithLogging(base_env) # Wrap the task environment with the keyboard. additional_discount = 0.9 env = environment_wrappers.EnvironmentWithKeyboardDirect( env=base_env, keyboard=keyboard, keyboard_ckpt_path=None, additional_discount=additional_discount, call_and_return=False) # Create the player agent. agent = regressed_agent.Agent( batch_size=10, optimizer_name="AdamOptimizer", optimizer_kwargs=dict(learning_rate=3e-2, ), init_w=np.random.normal(size=keyboard.num_cumulants) * 0.1, ) _, ema_returns = experiment.run(env, agent, num_episodes=FLAGS.num_episodes, report_every=FLAGS.report_every, num_eval_reps=100) if FLAGS.output_path: experiment.write_returns_to_file(FLAGS.output_path, ema_returns)
def main(argv): del argv # Load the keyboard. keyboard = smart_module.SmartModuleImport(hub.Module(FLAGS.keyboard_path)) # Create the task environment. base_env_config = configs.get_fig4_task_config() base_env = scavenger.Scavenger(**base_env_config) base_env = environment_wrappers.EnvironmentWithLogging(base_env) # Wrap the task environment with the keyboard. additional_discount = 0.9 env = environment_wrappers.EnvironmentWithKeyboardDirect( env=base_env, keyboard=keyboard, keyboard_ckpt_path=None, additional_discount=additional_discount, call_and_return=False) # Create the player agent. agent = regressed_agent.Agent( batch_size=10, optimizer_name="AdamOptimizer", # Disable training. optimizer_kwargs=dict(learning_rate=0.0,), init_w=[1., -1.]) returns = [] for _ in range(FLAGS.num_episodes): returns.append(experiment.run_episode(env, agent)) tf.logging.info("#" * 80) tf.logging.info( f"Avg. return over {FLAGS.num_episodes} episodes is {np.mean(returns)}") tf.logging.info("#" * 80)
def main(argv): del argv # Pretrain the keyboard and save a checkpoint. if FLAGS.keyboard_path: keyboard_path = FLAGS.keyboard_path else: with tf.Graph().as_default(): export_path = "/tmp/option_keyboard/keyboard" _ = keyboard_utils.create_and_train_keyboard( num_episodes=FLAGS.num_pretrain_episodes, export_path=export_path) keyboard_path = os.path.join(export_path, "tfhub") # Load the keyboard. keyboard = smart_module.SmartModuleImport(hub.Module(keyboard_path)) # Create the task environment. base_env_config = configs.get_task_config() base_env = scavenger.Scavenger(**base_env_config) base_env = environment_wrappers.EnvironmentWithLogging(base_env) # Wrap the task environment with the keyboard. additional_discount = 0.9 env = environment_wrappers.EnvironmentWithKeyboard( env=base_env, keyboard=keyboard, keyboard_ckpt_path=None, n_actions_per_dim=3, additional_discount=additional_discount, call_and_return=False) # Create the player agent. agent = dqn_agent.Agent(obs_spec=env.observation_spec(), action_spec=env.action_spec(), network_kwargs=dict( output_sizes=(64, 128), activate_final=True, ), epsilon=0.1, additional_discount=additional_discount, batch_size=10, optimizer_name="AdamOptimizer", optimizer_kwargs=dict(learning_rate=3e-4, )) _, ema_returns = experiment.run(env, agent, num_episodes=FLAGS.num_episodes, report_every=FLAGS.report_every) if FLAGS.output_path: experiment.write_returns_to_file(FLAGS.output_path, ema_returns)
def evaluate_keyboard(keyboard_path): """Evaluate a keyboard.""" angles_to_sweep = np.deg2rad(np.linspace(-90, 180, num=19, endpoint=True)) weights_to_sweep = np.stack( [np.cos(angles_to_sweep), np.sin(angles_to_sweep)], axis=-1) weights_to_sweep /= np.sum( np.maximum(weights_to_sweep, 0.0), axis=-1, keepdims=True) weights_to_sweep = np.clip(weights_to_sweep, -1000, 1000) tf.logging.info(weights_to_sweep) # Load the keyboard. keyboard = smart_module.SmartModuleImport(hub.Module(keyboard_path)) # Create the task environment. all_returns = [] for w_to_sweep in weights_to_sweep.tolist(): base_env_config = configs.get_fig5_task_config(w_to_sweep) base_env = scavenger.Scavenger(**base_env_config) base_env = environment_wrappers.EnvironmentWithLogging(base_env) # Wrap the task environment with the keyboard. with tf.variable_scope(None, default_name="inner_loop"): additional_discount = 0.9 env = environment_wrappers.EnvironmentWithKeyboardDirect( env=base_env, keyboard=keyboard, keyboard_ckpt_path=None, additional_discount=additional_discount, call_and_return=False) # Create the player agent. agent = regressed_agent.Agent( batch_size=10, optimizer_name="AdamOptimizer", # Disable training. optimizer_kwargs=dict(learning_rate=0.0,), init_w=w_to_sweep) returns = [] for _ in range(FLAGS.num_episodes): returns.append(experiment.run_episode(env, agent)) tf.logging.info(f"Task: {w_to_sweep}, mean returns over " f"{FLAGS.num_episodes} episodes is {np.mean(returns)}") all_returns.append(returns) return all_returns, weights_to_sweep
def main(argv): del argv # Load the keyboard. keyboard = smart_module.SmartModuleImport(hub.Module(FLAGS.keyboard_path)) # Create the task environment. base_env_config = configs.get_task_config() base_env = scavenger.Scavenger(**base_env_config) base_env = environment_wrappers.EnvironmentWithLogging(base_env) # Wrap the task environment with the keyboard. additional_discount = 0.9 env = environment_wrappers.EnvironmentWithKeyboardDirect( env=base_env, keyboard=keyboard, keyboard_ckpt_path=None, additional_discount=additional_discount, call_and_return=False) # Create the player agent. agent = regressed_agent.Agent( batch_size=10, optimizer_name="AdamOptimizer", # Disable training. optimizer_kwargs=dict(learning_rate=0.0, ), init_w=[float(x) for x in FLAGS.test_w]) returns = [] for _ in range(FLAGS.num_episodes): returns.append(experiment.run_episode(env, agent)) tf.logging.info("#" * 80) tf.logging.info( f"Avg. return over {FLAGS.num_episodes} episodes is {np.mean(returns)}" ) tf.logging.info("#" * 80) if FLAGS.output_path: with gfile.GFile(FLAGS.output_path, "w") as file: writer = csv.writer(file, delimiter=" ", quoting=csv.QUOTE_MINIMAL) writer.writerow(["return"]) for val in returns: writer.writerow([val])
def __init__(self, env, model_path): self._env = env create_ph = lambda x: tf.placeholder(shape=x.shape, dtype=x.dtype) add_batch = lambda x: tf.expand_dims(x, axis=0) # Make session and callables. with tf.Graph().as_default(): model = smart_module.SmartModuleImport(hub.Module(model_path)) obs_spec = env.observation_spec() obs_ph = tree.map_structure(create_ph, obs_spec) action_ph = tf.placeholder(shape=(), dtype=tf.int32) phis = model(tree.map_structure(add_batch, obs_ph), add_batch(action_ph)) self.num_phis = phis.shape.as_list()[-1] self._last_phis = np.zeros((self.num_phis,), dtype=np.float32) session = tf.Session() self._session = session self._phis_fn = session.make_callable( phis[0], tree.flatten([obs_ph, action_ph])) self._session.run(tf.global_variables_initializer())