示例#1
0
    opt.n_layers_D = 4
    opt.label_smooth = 1          # Label smoothing factor (for lsgan and vanilla gan only)
    opt.n_downsample = 3          # Downsample times
    opt.n_blocks = 4              # Numebr of residual blocks
    opt.first_kernel = 5          # The filter size of the first convolutional layer in encoder
    opt.batch_size = 16
    opt.n_epochs = 20             # # of epochs without lr decay
    opt.n_epochs_decay = 20       # # of epochs with lr decay
    opt.lr_policy = 'linear'      # decay policy.  Availability:  see options/train_options.py
    opt.beta1 = 0.5               # parameter for ADAM
    opt.lr = 5e-4


############################ Things recommanded to be changed ##########################################
# Set up the training procedure
opt.C_channel = 24
opt.SNR = 5

opt.is_feedback = False
opt.feedforward = 'EXPLICIT-RES'

opt.N_pilot = 1              # Number of pilots for chanenl estimation
opt.CE = 'MMSE'              # Channel Estimation Method
opt.EQ = 'MMSE'              # Equalization Method
opt.pilot = 'ZadoffChu'      # QPSK or ZadoffChu

opt.is_clip = False
opt.CR = 0 if not opt.is_clip else 1.2
opt.is_regu_PAPR = False
opt.lam_PAPR = 0.1
示例#2
0
elif opt.dataset_mode == 'CelebA':
    opt.n_layers_D = 3
    opt.label_smooth = 1          # Label smoothing factor (for lsgan and vanilla gan only)
    opt.n_downsample = 3          # Downsample times
    opt.n_blocks = 2              # Numebr of residual blocks
    opt.first_kernel = 5          # The filter size of the first convolutional layer in encoder
    opt.batchSize = 64 
    opt.n_epochs = 30             # # of epochs without lr decay
    opt.n_epochs_decay = 30       # # of epochs with lr decay
    opt.lr_policy = 'linear'      # decay policy.  Availability:  see options/train_options.py
    opt.beta1 = 0.5               # parameter for ADAM
    opt.lr = 5e-4

############################ Things recommanded to be changed ##########################################
# Set up the training procedure           
opt.C_channel = 12       
opt.SNR = 20

opt.is_feedback = False
opt.feedforward = 'EXPLICIT-RES'

opt.N_pilot = 2         # Number of pilots for chanenl estimation
opt.CE = 'MMSE'         # Channel Estimation Method
opt.EQ = 'MMSE'         # Equalization Method
opt.pilot = 'ZadoffChu'      # QPSK or ZadoffChu

opt.is_clip = False
opt.CR = 0 if not opt.is_clip else 1
opt.is_regu_PAPR = True
opt.lam_PAPR = 0.5
opt.is_regu_sigma = False
示例#3
0
import torch
import torchvision
import torchvision.transforms as transforms
import scipy.io as sio


# Extract the options
opt = TrainOptions().parse()

# For testing  the neural networks, manually edit/add options below
opt.gan_mode = 'none'       # 'wgangp', 'lsgan', 'vanilla', 'none'

opt.n_layers_D = 3
opt.label_smooth = 1          # Label smoothing factor (for lsgan and vanilla gan only)

opt.C_channel = 16            # The output channel number of encoder (Important: it controls the rate)
opt.n_downsample= 2           # Downsample times 
opt.n_blocks = 2              # Numebr of residual blocks
opt.first_kernel = 5          # The filter size of the first convolutional layer in encoder

# Set the input dataset
opt.dataset_mode = 'CIFAR10'   # Current dataset:  CIFAR10, CelebA

# Choose the channel 
opt.channel = 'awgn'          # Available channels: 'awgn', 'ofdm', 'bsc'

# Set up the training procedure
opt.batchSize = 64           # batch size
opt.n_epochs = 300           # # of epochs without lr decay
opt.n_epochs_decay = 300     # # of epochs with lr decay
opt.lr = 5e-4                # Initial learning rate