示例#1
0
def test_categorical_distribution_different_sequence_types():
    # type: () -> None

    c1 = distributions.CategoricalDistribution(choices=("Roppongi", "Azabu"))
    c2 = distributions.CategoricalDistribution(choices=["Roppongi", "Azabu"])

    assert c1 == c2
示例#2
0
def test_single() -> None:

    with warnings.catch_warnings():
        # UserWarning will be raised since the range is not divisible by step.
        warnings.simplefilter("ignore", category=UserWarning)
        single_distributions: List[distributions.BaseDistribution] = [
            distributions.UniformDistribution(low=1.0, high=1.0),
            distributions.LogUniformDistribution(low=7.3, high=7.3),
            distributions.DiscreteUniformDistribution(low=2.22, high=2.22, q=0.1),
            distributions.DiscreteUniformDistribution(low=2.22, high=2.24, q=0.3),
            distributions.IntUniformDistribution(low=-123, high=-123),
            distributions.IntUniformDistribution(low=-123, high=-120, step=4),
            distributions.CategoricalDistribution(choices=("foo",)),
            distributions.IntLogUniformDistribution(low=2, high=2),
        ]
    for distribution in single_distributions:
        assert distribution.single()

    nonsingle_distributions: List[distributions.BaseDistribution] = [
        distributions.UniformDistribution(low=1.0, high=1.001),
        distributions.LogUniformDistribution(low=7.3, high=10),
        distributions.DiscreteUniformDistribution(low=-30, high=-20, q=2),
        distributions.DiscreteUniformDistribution(low=-30, high=-20, q=10),
        # In Python, "0.3 - 0.2 != 0.1" is True.
        distributions.DiscreteUniformDistribution(low=0.2, high=0.3, q=0.1),
        distributions.DiscreteUniformDistribution(low=0.7, high=0.8, q=0.1),
        distributions.IntUniformDistribution(low=-123, high=0),
        distributions.IntUniformDistribution(low=-123, high=0, step=123),
        distributions.CategoricalDistribution(choices=("foo", "bar")),
        distributions.IntLogUniformDistribution(low=2, high=4),
    ]
    for distribution in nonsingle_distributions:
        assert not distribution.single()
示例#3
0
def test_single():
    # type: () -> None

    single_distributions = [
        distributions.UniformDistribution(low=1.0, high=1.0),
        distributions.LogUniformDistribution(low=7.3, high=7.3),
        distributions.DiscreteUniformDistribution(low=2.22, high=2.22, q=0.1),
        distributions.DiscreteUniformDistribution(low=2.22, high=2.24, q=0.3),
        distributions.IntUniformDistribution(low=-123, high=-123),
        distributions.IntUniformDistribution(low=-123, high=-120, step=4),
        distributions.CategoricalDistribution(choices=("foo", )),
    ]  # type: List[distributions.BaseDistribution]
    for distribution in single_distributions:
        assert distribution.single()

    nonsingle_distributions = [
        distributions.UniformDistribution(low=1.0, high=1.001),
        distributions.LogUniformDistribution(low=7.3, high=10),
        distributions.DiscreteUniformDistribution(low=-30, high=-20, q=2),
        distributions.DiscreteUniformDistribution(low=-30, high=-20, q=10),
        # In Python, "0.3 - 0.2 != 0.1" is True.
        distributions.DiscreteUniformDistribution(low=0.2, high=0.3, q=0.1),
        distributions.DiscreteUniformDistribution(low=0.7, high=0.8, q=0.1),
        distributions.IntUniformDistribution(low=-123, high=0),
        distributions.IntUniformDistribution(low=-123, high=0, step=123),
        distributions.CategoricalDistribution(choices=("foo", "bar")),
    ]  # type: List[distributions.BaseDistribution]
    for distribution in nonsingle_distributions:
        assert not distribution.single()
示例#4
0
def test_single():
    # type: () -> None

    single_distributions = [
        distributions.UniformDistribution(low=1.0, high=1.0),
        distributions.LogUniformDistribution(low=7.3, high=7.3),
        distributions.DiscreteUniformDistribution(low=2.22, high=2.22, q=0.1),
        distributions.IntUniformDistribution(low=-123, high=-123),
        distributions.CategoricalDistribution(choices=('foo', ))
    ]  # type: List[distributions.BaseDistribution]
    for distribution in single_distributions:
        assert distribution.single()

    nonsingle_distributions = [
        distributions.UniformDistribution(low=0.0, high=-100.0),
        distributions.UniformDistribution(low=1.0, high=1.001),
        distributions.LogUniformDistribution(low=7.3, high=7.2),
        distributions.LogUniformDistribution(low=7.3, high=10),
        distributions.DiscreteUniformDistribution(low=-30, high=-40, q=3),
        distributions.DiscreteUniformDistribution(low=-30, high=-20, q=2),
        distributions.IntUniformDistribution(low=123, high=100),
        distributions.IntUniformDistribution(low=-123, high=0),
        distributions.CategoricalDistribution(choices=()),
        distributions.CategoricalDistribution(choices=('foo', 'bar'))
    ]  # type: List[distributions.BaseDistribution]
    for distribution in nonsingle_distributions:
        assert not distribution.single()
示例#5
0
def test_distributions(storage_init_func):
    # type: (typing.Callable[[], storages.BaseStorage]) -> None

    def objective(trial):
        # type: (Trial) -> float

        trial.suggest_uniform('a', 0, 10)
        trial.suggest_loguniform('b', 0.1, 10)
        trial.suggest_discrete_uniform('c', 0, 10, 1)
        trial.suggest_int('d', 0, 10)
        trial.suggest_categorical('e', ['foo', 'bar', 'baz'])

        return 1.0

    study = create_study(storage_init_func())
    study.optimize(objective, n_trials=1)

    assert study.best_trial.distributions == {
        'a': distributions.UniformDistribution(low=0, high=10),
        'b': distributions.LogUniformDistribution(low=0.1, high=10),
        'c': distributions.DiscreteUniformDistribution(low=0, high=10, q=1),
        'd': distributions.IntUniformDistribution(low=0, high=10),
        'e':
        distributions.CategoricalDistribution(choices=('foo', 'bar', 'baz'))
    }
def test_convert_old_distribution_to_new_distribution_noop() -> None:
    # No conversion happens for CategoricalDistribution.
    cd = distributions.CategoricalDistribution(choices=["a", "b", "c"])
    assert distributions._convert_old_distribution_to_new_distribution(
        cd) == cd

    # No conversion happens for new distributions.
    fd = distributions.FloatDistribution(low=0, high=10, log=False, step=None)
    assert distributions._convert_old_distribution_to_new_distribution(
        fd) == fd

    dfd = distributions.FloatDistribution(low=0, high=10, log=False, step=2)
    assert distributions._convert_old_distribution_to_new_distribution(
        dfd) == dfd

    lfd = distributions.FloatDistribution(low=1, high=10, log=True, step=None)
    assert distributions._convert_old_distribution_to_new_distribution(
        lfd) == lfd

    id = distributions.IntDistribution(low=0, high=10)
    assert distributions._convert_old_distribution_to_new_distribution(
        id) == id

    idd = distributions.IntDistribution(low=0, high=10, step=2)
    assert distributions._convert_old_distribution_to_new_distribution(
        idd) == idd

    ild = distributions.IntDistribution(low=1, high=10, log=True)
    assert distributions._convert_old_distribution_to_new_distribution(
        ild) == ild
示例#7
0
def test_check_distribution_compatibility():
    # type: () -> None

    # test the same distribution
    for key in EXAMPLE_JSONS.keys():
        distributions.check_distribution_compatibility(EXAMPLE_DISTRIBUTIONS[key],
                                                       EXAMPLE_DISTRIBUTIONS[key])

    # test different distribution classes
    pytest.raises(
        ValueError, lambda: distributions.check_distribution_compatibility(
            EXAMPLE_DISTRIBUTIONS['u'], EXAMPLE_DISTRIBUTIONS['l']))

    # test dynamic value range (CategoricalDistribution)
    pytest.raises(
        ValueError, lambda: distributions.check_distribution_compatibility(
            EXAMPLE_DISTRIBUTIONS['c2'],
            distributions.CategoricalDistribution(choices=('Roppongi', 'Akasaka'))))

    # test dynamic value range (except CategoricalDistribution)
    distributions.check_distribution_compatibility(
        EXAMPLE_DISTRIBUTIONS['u'], distributions.UniformDistribution(low=-3.0, high=-2.0))
    distributions.check_distribution_compatibility(
        EXAMPLE_DISTRIBUTIONS['l'], distributions.LogUniformDistribution(low=-0.1, high=1.0))
    distributions.check_distribution_compatibility(
        EXAMPLE_DISTRIBUTIONS['du'],
        distributions.DiscreteUniformDistribution(low=-1.0, high=10.0, q=3.))
    distributions.check_distribution_compatibility(
        EXAMPLE_DISTRIBUTIONS['iu'], distributions.IntUniformDistribution(low=-1, high=1))
示例#8
0
def test_empty_distribution():
    # type: () -> None

    # Empty distributions cannot be instantiated.
    with pytest.raises(ValueError):
        distributions.UniformDistribution(low=0.0, high=-100.0)

    with pytest.raises(ValueError):
        distributions.LogUniformDistribution(low=7.3, high=7.2)

    with pytest.raises(ValueError):
        distributions.DiscreteUniformDistribution(low=-30, high=-40, q=3)

    with pytest.raises(ValueError):
        distributions.IntUniformDistribution(low=123, high=100)

    with pytest.raises(ValueError):
        distributions.IntUniformDistribution(low=123, high=100, step=2)

    with pytest.raises(ValueError):
        distributions.CategoricalDistribution(choices=())

    with pytest.raises(ValueError):
        distributions.IntLogUniformDistribution(low=123, high=100)

    with pytest.raises(ValueError):
        distributions.IntLogUniformDistribution(low=123, high=100, step=2)
示例#9
0
    def test_relative_sampling(storage_mode: str,
                               comm: CommunicatorBase) -> None:

        relative_search_space = {
            "x": distributions.UniformDistribution(low=-10, high=10),
            "y": distributions.LogUniformDistribution(low=20, high=30),
            "z": distributions.CategoricalDistribution(choices=(-1.0, 1.0)),
        }
        relative_params = {"x": 1.0, "y": 25.0, "z": -1.0}
        sampler = DeterministicRelativeSampler(
            relative_search_space,
            relative_params  # type: ignore
        )

        with MultiNodeStorageSupplier(storage_mode, comm) as storage:
            study = TestChainerMNStudy._create_shared_study(storage,
                                                            comm,
                                                            sampler=sampler)
            mn_study = ChainerMNStudy(study, comm)

            # Invoke optimize.
            n_trials = 20
            func = Func()
            mn_study.optimize(func, n_trials=n_trials)

            # Assert trial counts.
            assert len(mn_study.trials) == n_trials

            # Assert the parameters in `relative_params` have been suggested among all nodes.
            for trial in mn_study.trials:
                assert trial.params == relative_params
示例#10
0
    def suggest_categorical(self, name, choices):
        # type: (str, Sequence[T]) -> T
        """Suggest a value for the categorical parameter.

        The value is sampled from ``choices``.

        Example:

            Suggest a kernel function of `SVC <https://scikit-learn.org/stable/modules/generated/
            sklearn.svm.SVC.html>`_.

            .. code::

                >>> def objective(trial):
                >>>     ...
                >>>     kernel = trial.suggest_categorical('kernel', ['linear', 'poly', 'rbf'])
                >>>     clf = sklearn.svm.SVC(kernel=kernel)
                >>>     ...

        Args:
            name:
                A parameter name.
            choices:
                Candidates of parameter values.

        Returns:
            A suggested value.
        """

        choices = tuple(choices)
        return self._suggest(name, distributions.CategoricalDistribution(choices=choices))
示例#11
0
def test_ask_distribution_conversion_noop() -> None:
    fixed_distributions = {
        "ud": distributions.FloatDistribution(low=0,
                                              high=10,
                                              log=False,
                                              step=None),
        "dud": distributions.FloatDistribution(low=0,
                                               high=10,
                                               log=False,
                                               step=2),
        "lud": distributions.FloatDistribution(low=1,
                                               high=10,
                                               log=True,
                                               step=None),
        "id": distributions.IntDistribution(low=0, high=10, log=False, step=1),
        "idd": distributions.IntDistribution(low=0, high=10, log=False,
                                             step=2),
        "ild": distributions.IntDistribution(low=1, high=10, log=True, step=1),
        "cd": distributions.CategoricalDistribution(choices=["a", "b", "c"]),
    }

    study = create_study()

    trial = study.ask(fixed_distributions=fixed_distributions)

    # Check fixed_distributions doesn't change.
    assert trial.distributions == fixed_distributions
示例#12
0
def test_invalid_distribution():
    # type: () -> None

    with pytest.warns(UserWarning):
        distributions.CategoricalDistribution(choices=({
            "foo": "bar"
        }, ))  # type: ignore
示例#13
0
def test_distributions(storage_init_func):
    # type: (typing.Callable[[], storages.BaseStorage]) -> None

    def objective(trial):
        # type: (Trial) -> float

        trial.suggest_uniform("a", 0, 10)
        trial.suggest_loguniform("b", 0.1, 10)
        trial.suggest_discrete_uniform("c", 0, 10, 1)
        trial.suggest_int("d", 0, 10)
        trial.suggest_categorical("e", ["foo", "bar", "baz"])

        return 1.0

    study = create_study(storage_init_func())
    study.optimize(objective, n_trials=1)

    assert study.best_trial.distributions == {
        "a": distributions.UniformDistribution(low=0, high=10),
        "b": distributions.LogUniformDistribution(low=0.1, high=10),
        "c": distributions.DiscreteUniformDistribution(low=0, high=10, q=1),
        "d": distributions.IntUniformDistribution(low=0, high=10),
        "e":
        distributions.CategoricalDistribution(choices=("foo", "bar", "baz")),
    }
def test_categorical_contains() -> None:

    c = distributions.CategoricalDistribution(choices=("Roppongi", "Azabu"))
    assert not c._contains(-1)
    assert c._contains(0)
    assert c._contains(1)
    assert c._contains(1.5)
    assert not c._contains(3)
示例#15
0
def test_group() -> None:
    with warnings.catch_warnings():
        warnings.simplefilter("ignore", optuna.exceptions.ExperimentalWarning)
        sampler = TPESampler(multivariate=True, group=True)
    study = optuna.create_study(sampler=sampler)

    with patch.object(sampler, "_sample_relative", wraps=sampler._sample_relative) as mock:
        study.optimize(lambda t: t.suggest_int("x", 0, 10), n_trials=2)
        assert mock.call_count == 1
    assert study.trials[-1].distributions == {"x": distributions.IntDistribution(low=0, high=10)}

    with patch.object(sampler, "_sample_relative", wraps=sampler._sample_relative) as mock:
        study.optimize(
            lambda t: t.suggest_int("y", 0, 10) + t.suggest_float("z", -3, 3), n_trials=1
        )
        assert mock.call_count == 1
    assert study.trials[-1].distributions == {
        "y": distributions.IntDistribution(low=0, high=10),
        "z": distributions.FloatDistribution(low=-3, high=3),
    }

    with patch.object(sampler, "_sample_relative", wraps=sampler._sample_relative) as mock:
        study.optimize(
            lambda t: t.suggest_int("y", 0, 10)
            + t.suggest_float("z", -3, 3)
            + t.suggest_float("u", 1e-2, 1e2, log=True)
            + bool(t.suggest_categorical("v", ["A", "B", "C"])),
            n_trials=1,
        )
        assert mock.call_count == 2
    assert study.trials[-1].distributions == {
        "u": distributions.FloatDistribution(low=1e-2, high=1e2, log=True),
        "v": distributions.CategoricalDistribution(choices=["A", "B", "C"]),
        "y": distributions.IntDistribution(low=0, high=10),
        "z": distributions.FloatDistribution(low=-3, high=3),
    }

    with patch.object(sampler, "_sample_relative", wraps=sampler._sample_relative) as mock:
        study.optimize(lambda t: t.suggest_float("u", 1e-2, 1e2, log=True), n_trials=1)
        assert mock.call_count == 3
    assert study.trials[-1].distributions == {
        "u": distributions.FloatDistribution(low=1e-2, high=1e2, log=True)
    }

    with patch.object(sampler, "_sample_relative", wraps=sampler._sample_relative) as mock:
        study.optimize(
            lambda t: t.suggest_int("y", 0, 10) + t.suggest_int("w", 2, 8, log=True), n_trials=1
        )
        assert mock.call_count == 4
    assert study.trials[-1].distributions == {
        "y": distributions.IntDistribution(low=0, high=10),
        "w": distributions.IntDistribution(low=2, high=8, log=True),
    }

    with patch.object(sampler, "_sample_relative", wraps=sampler._sample_relative) as mock:
        study.optimize(lambda t: t.suggest_int("x", 0, 10), n_trials=1)
        assert mock.call_count == 6
    assert study.trials[-1].distributions == {"x": distributions.IntDistribution(low=0, high=10)}
示例#16
0
    def suggest_categorical(self, name, choices):
        # type: (str, Sequence[CategoricalChoiceType]) -> CategoricalChoiceType
        """Suggest a value for the categorical parameter.

        The value is sampled from ``choices``.

        Example:

            Suggest a kernel function of `SVC <https://scikit-learn.org/stable/modules/generated/
            sklearn.svm.SVC.html>`_.

            .. testsetup::

                import numpy as np
                from sklearn.model_selection import train_test_split

                np.random.seed(seed=0)
                X = np.random.randn(50).reshape(-1, 1)
                y = np.random.randint(0, 2, 50)
                X_train, X_valid, y_train, y_valid = train_test_split(X, y, random_state=0)

            .. testcode::

                import optuna
                from sklearn.svm import SVC

                def objective(trial):
                    kernel = trial.suggest_categorical('kernel', ['linear', 'poly', 'rbf'])
                    clf = SVC(kernel=kernel, gamma='scale', random_state=0)
                    clf.fit(X_train, y_train)
                    return clf.score(X_valid, y_valid)

                study = optuna.create_study(direction='maximize')
                study.optimize(objective, n_trials=3)


        Args:
            name:
                A parameter name.
            choices:
                Parameter value candidates.

        .. seealso::
            :class:`~optuna.distributions.CategoricalDistribution`.

        Returns:
            A suggested value.
        """

        choices = tuple(choices)

        # There is no need to call self._check_distribution because
        # CategoricalDistribution does not support dynamic value space.

        return self._suggest(
            name, distributions.CategoricalDistribution(choices=choices))
示例#17
0
    def test_distributions(storage_mode: str, comm: CommunicatorBase) -> None:

        with MultiNodeStorageSupplier(storage_mode, comm) as storage:
            study = TestChainerMNStudy._create_shared_study(storage, comm)
            mn_trial = _create_new_chainermn_trial(study, comm)

            mn_trial.suggest_categorical("x", [1])
            assert mn_trial.distributions == {
                "x": distributions.CategoricalDistribution(choices=(1, ))
            }
示例#18
0
文件: test_study.py 项目: smly/optuna
def test_ask_fixed_search_space() -> None:
    fixed_distributions = {
        "x": distributions.UniformDistribution(0, 1),
        "y": distributions.CategoricalDistribution(["bacon", "spam"]),
    }

    study = create_study()
    trial = study.ask(fixed_distributions=fixed_distributions)

    params = trial.params
    assert len(trial.params) == 2
    assert 0 <= params["x"] < 1
    assert params["y"] in ["bacon", "spam"]
示例#19
0
    def test_distributions(storage_mode, cache_mode, comm):
        # type: (str, bool, CommunicatorBase) -> None

        with MultiNodeStorageSupplier(storage_mode, cache_mode,
                                      comm) as storage:
            study = TestChainerMNStudy._create_shared_study(storage, comm)
            trial_id = storage.create_new_trial_id(study.study_id)
            trial = Trial(study, trial_id)
            mn_trial = integration.chainermn._ChainerMNTrial(trial, comm)

            mn_trial.suggest_categorical('x', [1])
            assert mn_trial.distributions == {
                'x': distributions.CategoricalDistribution(choices=(1, ))
            }
示例#20
0
def test_optuna_search_invalid_param_dist() -> None:

    X, y = make_blobs(n_samples=10)
    est = KernelDensity()
    param_dist = ["kernel", distributions.CategoricalDistribution(("gaussian", "linear"))]

    with pytest.raises(TypeError, match="param_distributions must be a dictionary."):
        integration.OptunaSearchCV(
            est,
            param_dist,  # type: ignore
            cv=3,
            error_score="raise",
            random_state=0,
            return_train_score=True,
        )
示例#21
0
def test_contains():
    # type: () -> None

    u = distributions.UniformDistribution(low=1.0, high=2.0)
    assert not u._contains(0.9)
    assert u._contains(1)
    assert u._contains(1.5)
    assert not u._contains(2)

    lu = distributions.LogUniformDistribution(low=0.001, high=100)
    assert not lu._contains(0.0)
    assert lu._contains(0.001)
    assert lu._contains(12.3)
    assert not lu._contains(100)

    du = distributions.DiscreteUniformDistribution(low=1.0, high=10.0, q=2.0)
    assert not du._contains(0.9)
    assert du._contains(1.0)
    assert du._contains(3.5)
    assert du._contains(6)
    assert du._contains(10)
    assert not du._contains(10.1)

    iu = distributions.IntUniformDistribution(low=1, high=10)
    assert not iu._contains(0.9)
    assert iu._contains(1)
    assert iu._contains(4)
    assert iu._contains(6)
    assert iu._contains(10)
    assert not iu._contains(10.1)
    assert not iu._contains(11)

    # IntUniformDistribution with a 'q' parameter.
    iuq = distributions.IntUniformDistribution(low=1, high=10, step=2)
    assert not iuq._contains(0.9)
    assert iuq._contains(1)
    assert iuq._contains(4)
    assert iuq._contains(6)
    assert iuq._contains(10)
    assert not iuq._contains(10.1)
    assert not iuq._contains(11)

    c = distributions.CategoricalDistribution(choices=("Roppongi", "Azabu"))
    assert not c._contains(-1)
    assert c._contains(0)
    assert c._contains(1)
    assert c._contains(1.5)
    assert not c._contains(3)
示例#22
0
def test_check_distribution_compatibility():
    # type: () -> None

    # test the same distribution
    for key in EXAMPLE_JSONS.keys():
        distributions.check_distribution_compatibility(
            EXAMPLE_DISTRIBUTIONS[key], EXAMPLE_DISTRIBUTIONS[key])

    # test different distribution classes
    pytest.raises(
        ValueError,
        lambda: distributions.check_distribution_compatibility(
            EXAMPLE_DISTRIBUTIONS["u"], EXAMPLE_DISTRIBUTIONS["l"]),
    )

    # test dynamic value range (CategoricalDistribution)
    pytest.raises(
        ValueError,
        lambda: distributions.check_distribution_compatibility(
            EXAMPLE_DISTRIBUTIONS["c2"],
            distributions.CategoricalDistribution(choices=("Roppongi",
                                                           "Akasaka")),
        ),
    )

    # test dynamic value range (except CategoricalDistribution)
    distributions.check_distribution_compatibility(
        EXAMPLE_DISTRIBUTIONS["u"],
        distributions.UniformDistribution(low=-3.0, high=-2.0))
    distributions.check_distribution_compatibility(
        EXAMPLE_DISTRIBUTIONS["l"],
        distributions.LogUniformDistribution(low=0.1, high=1.0))
    distributions.check_distribution_compatibility(
        EXAMPLE_DISTRIBUTIONS["du"],
        distributions.DiscreteUniformDistribution(low=-1.0, high=11.0, q=3.0),
    )
    distributions.check_distribution_compatibility(
        EXAMPLE_DISTRIBUTIONS["iu"],
        distributions.IntUniformDistribution(low=-1, high=1))
    distributions.check_distribution_compatibility(
        EXAMPLE_DISTRIBUTIONS["ilu"],
        distributions.IntLogUniformDistribution(low=1, high=13),
    )
示例#23
0
def test_optuna_search_invalid_param_dist():
    # type: () -> None

    X, y = make_blobs(n_samples=10)
    est = KernelDensity()
    param_dist = [
        'kernel',
        distributions.CategoricalDistribution(('gaussian', 'linear'))
    ]
    optuna_search = integration.OptunaSearchCV(
        est,
        param_dist,  # type: ignore
        cv=3,
        error_score='raise',
        random_state=0,
        return_train_score=True)

    with pytest.raises(ValueError,
                       match='param_distributions must be a dictionary.'):
        optuna_search.fit(X)
示例#24
0
文件: trial.py 项目: kingmbc/optuna
    def suggest_categorical(self, name, choices):
        # type: (str, Sequence[CategoricalChoiceType]) -> CategoricalChoiceType
        """Suggest a value for the categorical parameter.

        The value is sampled from ``choices``.

        Example:

            Suggest a kernel function of `SVC <https://scikit-learn.org/stable/modules/generated/
            sklearn.svm.SVC.html>`_.

            .. code::

                >>> def objective(trial):
                >>>     ...
                >>>     kernel = trial.suggest_categorical('kernel', ['linear', 'poly', 'rbf'])
                >>>     clf = sklearn.svm.SVC(kernel=kernel)
                >>>     ...

        Args:
            name:
                A parameter name.
            choices:
                Parameter value candidates.

        .. seealso::
            :class:`~optuna.distributions.CategoricalDistribution`.

        Returns:
            A suggested value.
        """

        choices = tuple(choices)

        # There is no need to call self._check_distribution because
        # CategoricalDistribution does not support dynamic value space.

        return self._suggest(
            name, distributions.CategoricalDistribution(choices=choices))
示例#25
0
def test_infer_relative_search_space() -> None:
    sampler = TPESampler()
    search_space = {
        "a": distributions.UniformDistribution(1.0, 100.0),
        "b": distributions.LogUniformDistribution(1.0, 100.0),
        "c": distributions.DiscreteUniformDistribution(1.0, 100.0, 3.0),
        "d": distributions.IntUniformDistribution(1, 100),
        "e": distributions.IntUniformDistribution(0, 100, step=2),
        "f": distributions.IntLogUniformDistribution(1, 100),
        "g": distributions.CategoricalDistribution(["x", "y", "z"]),
    }

    def obj(t: Trial) -> float:
        t.suggest_uniform("a", 1.0, 100.0)
        t.suggest_loguniform("b", 1.0, 100.0)
        t.suggest_discrete_uniform("c", 1.0, 100.0, 3.0)
        t.suggest_int("d", 1, 100)
        t.suggest_int("e", 0, 100, step=2)
        t.suggest_int("f", 1, 100, log=True)
        t.suggest_categorical("g", ["x", "y", "z"])
        return 0.0

    # Study and frozen-trial are not supposed to be accessed.
    study1 = Mock(spec=[])
    frozen_trial = Mock(spec=[])
    assert sampler.infer_relative_search_space(study1, frozen_trial) == {}

    study2 = optuna.create_study(sampler=sampler)
    study2.optimize(obj, n_trials=1)
    assert sampler.infer_relative_search_space(study2, study2.best_trial) == {}

    with warnings.catch_warnings():
        warnings.simplefilter("ignore", optuna.exceptions.ExperimentalWarning)
        sampler = TPESampler(multivariate=True)
    study3 = optuna.create_study(sampler=sampler)
    study3.optimize(obj, n_trials=1)
    assert sampler.infer_relative_search_space(
        study3, study3.best_trial) == search_space
示例#26
0
def test_contains():
    # type: () -> None

    u = distributions.UniformDistribution(low=1., high=2.)
    assert not u._contains(0.9)
    assert u._contains(1)
    assert u._contains(1.5)
    assert not u._contains(2)

    lu = distributions.LogUniformDistribution(low=0.001, high=100)
    assert not lu._contains(0.0)
    assert lu._contains(0.001)
    assert lu._contains(12.3)
    assert not lu._contains(100)

    du = distributions.DiscreteUniformDistribution(low=1., high=10., q=2.)
    assert not du._contains(0.9)
    assert du._contains(1.0)
    assert du._contains(3.5)
    assert du._contains(6)
    assert du._contains(10)
    assert not du._contains(10.1)

    iu = distributions.IntUniformDistribution(low=1, high=10)
    assert not iu._contains(0.9)
    assert iu._contains(1)
    assert iu._contains(3.5)
    assert iu._contains(6)
    assert iu._contains(10)
    assert iu._contains(10.1)
    assert not iu._contains(11)

    c = distributions.CategoricalDistribution(choices=('Roppongi', 'Azabu'))
    assert not c._contains(-1)
    assert c._contains(0)
    assert c._contains(1)
    assert c._contains(1.5)
    assert not c._contains(3)
示例#27
0
def test_create_trial_distribution_conversion_noop() -> None:
    fixed_params = {
        "ud": 0,
        "dud": 2,
        "lud": 1,
        "id": 0,
        "idd": 2,
        "ild": 1,
        "cd": "a",
    }

    fixed_distributions = {
        "ud": distributions.FloatDistribution(low=0,
                                              high=10,
                                              log=False,
                                              step=None),
        "dud": distributions.FloatDistribution(low=0,
                                               high=10,
                                               log=False,
                                               step=2),
        "lud": distributions.FloatDistribution(low=1,
                                               high=10,
                                               log=True,
                                               step=None),
        "id": distributions.IntDistribution(low=0, high=10, log=False, step=1),
        "idd": distributions.IntDistribution(low=0, high=10, log=False,
                                             step=2),
        "ild": distributions.IntDistribution(low=1, high=10, log=True, step=1),
        "cd": distributions.CategoricalDistribution(choices=["a", "b", "c"]),
    }

    trial = create_trial(params=fixed_params,
                         distributions=fixed_distributions,
                         value=1)

    # Check fixed_distributions doesn't change.
    assert trial.distributions == fixed_distributions
示例#28
0
    def suggest_categorical(self, name, choices):
        # type: (str, Sequence[T]) -> T

        choices = tuple(choices)
        return self._suggest(name, distributions.CategoricalDistribution(choices=choices))
示例#29
0
def test_contains() -> None:
    u = distributions.UniformDistribution(low=1.0, high=2.0)
    assert not u._contains(0.9)
    assert u._contains(1)
    assert u._contains(1.5)
    assert not u._contains(2)

    lu = distributions.LogUniformDistribution(low=0.001, high=100)
    assert not lu._contains(0.0)
    assert lu._contains(0.001)
    assert lu._contains(12.3)
    assert not lu._contains(100)

    with warnings.catch_warnings():
        # UserWarning will be raised since the range is not divisible by 2.
        # The range will be replaced with [1.0, 9.0].
        warnings.simplefilter("ignore", category=UserWarning)
        du = distributions.DiscreteUniformDistribution(low=1.0,
                                                       high=10.0,
                                                       q=2.0)
    assert not du._contains(0.9)
    assert du._contains(1.0)
    assert du._contains(3.5)
    assert du._contains(6)
    assert du._contains(9)
    assert not du._contains(9.1)
    assert not du._contains(10)

    iu = distributions.IntUniformDistribution(low=1, high=10)
    assert not iu._contains(0.9)
    assert iu._contains(1)
    assert iu._contains(4)
    assert iu._contains(6)
    assert iu._contains(10)
    assert not iu._contains(10.1)
    assert not iu._contains(11)

    # IntUniformDistribution with a 'step' parameter.
    with warnings.catch_warnings():
        # UserWarning will be raised since the range is not divisible by 2.
        # The range will be replaced with [1, 9].
        warnings.simplefilter("ignore", category=UserWarning)
        iuq = distributions.IntUniformDistribution(low=1, high=10, step=2)
    assert not iuq._contains(0.9)
    assert iuq._contains(1)
    assert iuq._contains(4)
    assert iuq._contains(6)
    assert iuq._contains(9)
    assert not iuq._contains(9.1)
    assert not iuq._contains(10)

    c = distributions.CategoricalDistribution(choices=("Roppongi", "Azabu"))
    assert not c._contains(-1)
    assert c._contains(0)
    assert c._contains(1)
    assert c._contains(1.5)
    assert not c._contains(3)

    ilu = distributions.IntUniformDistribution(low=2, high=12)
    assert not ilu._contains(0.9)
    assert ilu._contains(2)
    assert ilu._contains(4)
    assert ilu._contains(6)
    assert ilu._contains(12)
    assert not ilu._contains(12.1)
    assert not ilu._contains(13)

    iluq = distributions.IntLogUniformDistribution(low=2, high=7)
    assert not iluq._contains(0.9)
    assert iluq._contains(2)
    assert iluq._contains(4)
    assert iluq._contains(5)
    assert iluq._contains(6)
    assert not iluq._contains(7.1)
    assert not iluq._contains(8)
示例#30
0
import json
from typing import Any
from typing import Dict
from typing import List
import warnings

import pytest

from optuna import distributions

EXAMPLE_DISTRIBUTIONS = {
    "u": distributions.UniformDistribution(low=1.0, high=2.0),
    "l": distributions.LogUniformDistribution(low=0.001, high=100),
    "du": distributions.DiscreteUniformDistribution(low=1.0, high=9.0, q=2.0),
    "iu": distributions.IntUniformDistribution(low=1, high=9, step=2),
    "c1": distributions.CategoricalDistribution(choices=(2.71, -float("inf"))),
    "c2": distributions.CategoricalDistribution(choices=("Roppongi", "Azabu")),
    "c3": distributions.CategoricalDistribution(choices=["Roppongi", "Azabu"]),
    "ilu": distributions.IntLogUniformDistribution(low=2, high=12, step=2),
}  # type: Dict[str, Any]

EXAMPLE_JSONS = {
    "u":
    '{"name": "UniformDistribution", "attributes": {"low": 1.0, "high": 2.0}}',
    "l":
    '{"name": "LogUniformDistribution", "attributes": {"low": 0.001, "high": 100}}',
    "du":
    '{"name": "DiscreteUniformDistribution",'
    '"attributes": {"low": 1.0, "high": 9.0, "q": 2.0}}',
    "iu":
    '{"name": "IntUniformDistribution", "attributes": {"low": 1, "high": 9, "step": 2}}',