示例#1
0
def py_correspondences_proc_c(exp):
    """ Provides correspondences
    Inputs:
        exp = info.object from the pyptv_gui
    Outputs:
        quadruplets, ... : four empty lists filled later with the
    correspondences of quadruplets, triplets, pairs, and so on
    """

    frame = 123456789  # just a temporary workaround. todo: think how to write

    #        if any([len(det) == 0 for det in detections]):
    #            return False

    # Corresp. + positions.
    sorted_pos, sorted_corresp, num_targs = correspondences(
        exp.detections, exp.corrected, exp.cals, exp.vpar, exp.cpar)

    # Save targets only after they've been modified:
    for i_cam in range(exp.n_cams):
        exp.detections[i_cam].write(exp.spar.get_img_base_name(i_cam), frame)

    print("Frame " + str(frame) + " had " \
          + repr([s.shape[1] for s in sorted_pos]) + " correspondences.")

    return sorted_pos, sorted_corresp, num_targs
示例#2
0
    def test_full_corresp(self):
        """Full scene correspondences"""
        cpar = ControlParams(4)
        cpar.read_control_par(r"testing_fodder/corresp/control.par")
        vpar = VolumeParams()
        vpar.read_volume_par(r"testing_fodder/corresp/criteria.par")

        # Cameras are at so high angles that opposing cameras don't see each
        # other in the normal air-glass-water setting.
        cpar.get_multimedia_params().set_layers([1.0001], [1.])
        cpar.get_multimedia_params().set_n3(1.0001)

        cals = []
        img_pts = []
        corrected = []
        for c in xrange(4):
            cal = Calibration()
            cal.from_file(
                "testing_fodder/calibration/sym_cam%d.tif.ori" % (c + 1),
                "testing_fodder/calibration/cam1.tif.addpar")
            cals.append(cal)

            # Generate test targets.
            targs = TargetArray(16)
            for row, col in np.ndindex(4, 4):
                targ_ix = row * 4 + col
                # Avoid symmetric case:
                if (c % 2):
                    targ_ix = 15 - targ_ix
                targ = targs[targ_ix]

                pos3d = 10 * np.array([[col, row, 0]], dtype=np.float64)
                pos2d = image_coordinates(pos3d, cal,
                                          cpar.get_multimedia_params())
                targ.set_pos(convert_arr_metric_to_pixel(pos2d, cpar)[0])

                targ.set_pnr(targ_ix)
                targ.set_pixel_counts(25, 5, 5)
                targ.set_sum_grey_value(10)

            img_pts.append(targs)
            mc = MatchedCoords(targs, cpar, cal)
            corrected.append(mc)

        sorted_pos, sorted_corresp, num_targs = correspondences(
            img_pts, corrected, cals, vpar, cpar)

        self.failUnlessEqual(num_targs, 16)
示例#3
0
 def test_full_corresp(self):
     """Full scene correspondences"""
     print "about to dump core"
     cpar = ControlParams(4)
     cpar.read_control_par("testing_fodder/corresp/control.par")
     vpar = VolumeParams()
     vpar.read_volume_par("testing_fodder/corresp/criteria.par")
     
     # Cameras are at so high angles that opposing cameras don't see each 
     # other in the normal air-glass-water setting.
     cpar.get_multimedia_params().set_layers([1.0001], [1.])
     cpar.get_multimedia_params().set_n3(1.0001)
     
     cals = []
     img_pts = []
     corrected = []
     for c in xrange(4):
         cal = Calibration()
         cal.from_file(
             "testing_fodder/calibration/sym_cam%d.tif.ori" % (c + 1),
             "testing_fodder/calibration/cam1.tif.addpar")
         cals.append(cal)
     
         # Generate test targets.
         targs = TargetArray(16)
         for row, col in np.ndindex(4, 4):
             targ_ix = row*4 + col
             # Avoid symmetric case:
             if (c % 2):
                 targ_ix = 15 - targ_ix
             targ = targs[targ_ix]
             
             pos3d = 10*np.array([[col, row, 0]], dtype=np.float64)
             pos2d = image_coordinates(
                 pos3d, cal, cpar.get_multimedia_params())
             targ.set_pos(convert_arr_metric_to_pixel(pos2d, cpar)[0])
             
             targ.set_pnr(targ_ix)
             targ.set_pixel_counts(25, 5, 5)
             targ.set_sum_grey_value(10)
         
         img_pts.append(targs)
         mc = MatchedCoords(targs, cpar, cal)
         corrected.append(mc)
     
     sorted_pos, sorted_corresp, num_targs = correspondences(
         img_pts, corrected, cals, vpar, cpar)
     self.failUnlessEqual(num_targs, 16)
示例#4
0
    def test_single_cam_corresp(self):
        """Single camera correspondence"""
        cpar = ControlParams(1)
        cpar.read_control_par(b"testing_fodder/single_cam/parameters/ptv.par")
        vpar = VolumeParams()
        vpar.read_volume_par(b"testing_fodder/single_cam/parameters/criteria.par")
        
        # Cameras are at so high angles that opposing cameras don't see each 
        # other in the normal air-glass-water setting.
        cpar.get_multimedia_params().set_layers([1.], [1.])
        cpar.get_multimedia_params().set_n3(1.)
        
        cals = []
        img_pts = []
        corrected = []
        cal = Calibration()
        cal.from_file(
            b"testing_fodder/single_cam/calibration/cam_1.tif.ori",
            b"testing_fodder/single_cam/calibration/cam_1.tif.addpar")
        cals.append(cal)
        
        # Generate test targets.
        targs = TargetArray(9)
        for row, col in np.ndindex(3, 3):
            targ_ix = row*3 + col
            targ = targs[targ_ix]
            
            pos3d = 10*np.array([[col, row, 0]], dtype=np.float64)
            pos2d = image_coordinates(
                pos3d, cal, cpar.get_multimedia_params())
            targ.set_pos(convert_arr_metric_to_pixel(pos2d, cpar)[0])
            
            targ.set_pnr(targ_ix)
            targ.set_pixel_counts(25, 5, 5)
            targ.set_sum_grey_value(10)
            
            img_pts.append(targs)
            mc = MatchedCoords(targs, cpar, cal)
            corrected.append(mc)
        
        _, _, num_targs = correspondences(
            img_pts, corrected, cals, vpar, cpar)

        self.failUnlessEqual(num_targs, 9)
示例#5
0
    def test_single_cam_corresp(self):
        """Single camera correspondence"""
        cpar = ControlParams(1)
        cpar.read_control_par("testing_fodder/single_cam/parameters/ptv.par")
        vpar = VolumeParams()
        vpar.read_volume_par(
            "testing_fodder/single_cam/parameters/criteria.par")

        # Cameras are at so high angles that opposing cameras don't see each
        # other in the normal air-glass-water setting.
        cpar.get_multimedia_params().set_layers([1.], [1.])
        cpar.get_multimedia_params().set_n3(1.)

        cals = []
        img_pts = []
        corrected = []
        cal = Calibration()
        cal.from_file(
            "testing_fodder/single_cam/calibration/cam_1.tif.ori",
            "testing_fodder/single_cam/calibration/cam_1.tif.addpar")
        cals.append(cal)

        # Generate test targets.
        targs = TargetArray(9)
        for row, col in np.ndindex(3, 3):
            targ_ix = row * 3 + col
            targ = targs[targ_ix]

            pos3d = 10 * np.array([[col, row, 0]], dtype=np.float64)
            pos2d = image_coordinates(pos3d, cal, cpar.get_multimedia_params())
            targ.set_pos(convert_arr_metric_to_pixel(pos2d, cpar)[0])

            targ.set_pnr(targ_ix)
            targ.set_pixel_counts(25, 5, 5)
            targ.set_sum_grey_value(10)

            img_pts.append(targs)
            mc = MatchedCoords(targs, cpar, cal)
            corrected.append(mc)

        sorted_pos, sorted_corresp, num_targs = correspondences(
            img_pts, corrected, cals, vpar, cpar)

        self.failUnlessEqual(num_targs, 9)
示例#6
0
def py_sequence_loop(exp):
    """ Runs a sequence of detection, stereo-correspondence, determination and stores
        the data in the cam#.XXX_targets (rewritten) and rt_is.XXX files. Basically
        it is to run the batch as in pyptv_batch.py without tracking
    """
    n_cams, cpar, spar, vpar, tpar, cals = \
        exp.n_cams, exp.cpar, exp.spar, exp.vpar, exp.tpar, exp.cals

    pftVersionParams = par.PftVersionParams(path='./parameters')
    pftVersionParams.read()
    Existing_Target = np.bool(pftVersionParams.Existing_Target)

    # sequence loop for all frames
    for frame in range(spar.get_first(), spar.get_last() + 1):
        print("processing frame %d" % frame)

        detections = []
        corrected = []
        for i_cam in range(n_cams):
            if Existing_Target:
                targs = read_targets(spar.get_img_base_name(i_cam), frame)
            else:
                imname = spar.get_img_base_name(i_cam) + str(frame).encode()
                print(imname)
                if not os.path.exists(imname):
                    print(os.path.abspath(os.path.curdir))
                    print('{0} does not exist'.format(imname))

                img = imread(imname.decode())
                # time.sleep(.1) # I'm not sure we need it here
                hp = simple_highpass(img, cpar)
                targs = target_recognition(hp, tpar, i_cam, cpar)

            targs.sort_y()
            detections.append(targs)
            mc = MatchedCoords(targs, cpar, cals[i_cam])
            pos, pnr = mc.as_arrays()
            corrected.append(mc)

        #        if any([len(det) == 0 for det in detections]):
        #            return False

        # Corresp. + positions.
        sorted_pos, sorted_corresp, num_targs = correspondences(
            detections, corrected, cals, vpar, cpar)

        # Save targets only after they've been modified:
        for i_cam in range(n_cams):
            detections[i_cam].write(spar.get_img_base_name(i_cam), frame)


        print("Frame " + str(frame) + " had " \
              + repr([s.shape[1] for s in sorted_pos]) + " correspondences.")

        # Distinction between quad/trip irrelevant here.
        sorted_pos = np.concatenate(sorted_pos, axis=1)
        sorted_corresp = np.concatenate(sorted_corresp, axis=1)

        flat = np.array([corrected[i].get_by_pnrs(sorted_corresp[i]) \
                         for i in range(len(cals))])
        pos, rcm = point_positions(flat.transpose(1, 0, 2), cpar, cals, vpar)

        # if len(cals) == 1: # single camera case
        #     sorted_corresp = np.tile(sorted_corresp,(4,1))
        #     sorted_corresp[1:,:] = -1

        if len(cals) < 4:
            print_corresp = -1 * np.ones((4, sorted_corresp.shape[1]))
            print_corresp[:len(cals), :] = sorted_corresp
        else:
            print_corresp = sorted_corresp

        # Save rt_is
        print(default_naming['corres'])
        rt_is = open(default_naming['corres'] + b'.' + str(frame).encode(),
                     'w')
        rt_is.write(str(pos.shape[0]) + '\n')
        for pix, pt in enumerate(pos):
            pt_args = (pix + 1, ) + tuple(pt) + tuple(print_corresp[:, pix])
            rt_is.write("%4d %9.3f %9.3f %9.3f %4d %4d %4d %4d\n" % pt_args)
        rt_is.close()
示例#7
0
def run_batch(new_seq_first, new_seq_last):
    """ this file runs inside exp_path, so the other names are
    prescribed by the OpenPTV type of a folder:
        /parameters
        /img
        /cal
        /res
    """
    # read the number of cameras
    with open('parameters/ptv.par', 'r') as f:
        n_cams = int(f.readline())

    # Control parameters
    cpar = ControlParams(n_cams)
    cpar.read_control_par(b'parameters/ptv.par')

    # Sequence parameters
    spar = SequenceParams(num_cams=n_cams)
    spar.read_sequence_par(b'parameters/sequence.par', n_cams)
    spar.set_first(new_seq_first)
    spar.set_last(new_seq_last)

    # Volume parameters
    vpar = VolumeParams()
    vpar.read_volume_par(b'parameters/criteria.par')

    # Tracking parameters
    track_par = TrackingParams()
    track_par.read_track_par(b'parameters/track.par')

    # Target parameters
    tpar = TargetParams()
    tpar.read(b'parameters/targ_rec.par')

    #

    # Calibration parameters

    cals = []
    for i_cam in range(n_cams):
        cal = Calibration()
        tmp = cpar.get_cal_img_base_name(i_cam)
        cal.from_file(tmp + b'.ori', tmp + b'.addpar')
        cals.append(cal)

    # sequence loop for all frames
    for frame in range(new_seq_first, new_seq_last + 1):
        print("processing frame %d" % frame)

        detections = []
        corrected = []
        for i_cam in range(n_cams):
            imname = spar.get_img_base_name(i_cam) + str(frame)
            img = imread(imname)
            hp = simple_highpass(img, cpar)
            targs = target_recognition(hp, tpar, i_cam, cpar)
            print(targs)

            targs.sort_y()
            detections.append(targs)
            mc = MatchedCoords(targs, cpar, cals[i_cam])
            pos, pnr = mc.as_arrays()
            print(i_cam)
            corrected.append(mc)

        #        if any([len(det) == 0 for det in detections]):
        #            return False

        # Corresp. + positions.
        sorted_pos, sorted_corresp, num_targs = correspondences(
            detections, corrected, cals, vpar, cpar)

        # Save targets only after they've been modified:
        for i_cam in xrange(n_cams):
            detections[i_cam].write(spar.get_img_base_name(i_cam), frame)


        print("Frame " + str(frame) + " had " \
              + repr([s.shape[1] for s in sorted_pos]) + " correspondences.")

        # Distinction between quad/trip irrelevant here.
        sorted_pos = np.concatenate(sorted_pos, axis=1)
        sorted_corresp = np.concatenate(sorted_corresp, axis=1)

        flat = np.array([corrected[i].get_by_pnrs(sorted_corresp[i]) \
                         for i in xrange(len(cals))])
        pos, rcm = point_positions(flat.transpose(1, 0, 2), cpar, cals, vpar)

        if len(cals) < 4:
            print_corresp = -1 * np.ones((4, sorted_corresp.shape[1]))
            print_corresp[:len(cals), :] = sorted_corresp
        else:
            print_corresp = sorted_corresp

        # Save rt_is
        rt_is = open(default_naming['corres'] + '.' + str(frame), 'w')
        rt_is.write(str(pos.shape[0]) + '\n')
        for pix, pt in enumerate(pos):
            pt_args = (pix + 1, ) + tuple(pt) + tuple(print_corresp[:, pix])
            rt_is.write("%4d %9.3f %9.3f %9.3f %4d %4d %4d %4d\n" % pt_args)
        rt_is.close()
    # end of a sequence loop

    tracker = Tracker(cpar, vpar, track_par, spar, cals, default_naming)
    tracker.full_forward()