def py_detection_proc_c(list_of_images, cpar, tpar, cals): """ Detection of targets """ detections, corrected = [], [] for i_cam, img in enumerate(list_of_images): targs = target_recognition(img, tpar, i_cam, cpar) targs.sort_y() detections.append(targs) mc = MatchedCoords(targs, cpar, cals[i_cam]) corrected.append(mc) return detections, corrected
def test_two_targets(self): img = np.array([[0, 0, 0, 0, 0], [0, 255, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 251, 0], [0, 0, 0, 0, 0]], dtype=np.uint8) cpar = ControlParams(4, image_size=(5, 5)) tpar = TargetParams(gvthresh=[250, 100, 20, 20], discont=5, pixel_count_bounds=(1, 10), min_sum_grey=12, xsize_bounds=(1, 10), ysize_bounds=(1, 10)) targs = target_recognition(img, tpar, 0, cpar) self.assertEqual(len(targs), 2) self.assertEqual(targs[0].count_pixels(), (1, 1, 1)) # Exclude the first target and try again: tpar.set_grey_thresholds([252, 100, 20, 20]) targs = target_recognition(img, tpar, 0, cpar) self.assertEqual(len(targs), 1) self.assertEqual(targs[0].count_pixels(), (1, 1, 1))
def test_one_targets2(self): img = np.array( [[0, 0, 0, 0, 0], [0, 255, 250, 250, 0], [0, 251, 253, 251, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], dtype=np.uint8) cpar = ControlParams(4, image_size=(5, 5)) tpar = TargetParams(gvthresh=[250, 100, 20, 20], discont=5, pixel_count_bounds=(1, 10), min_sum_grey=12, xsize_bounds=(1, 10), ysize_bounds=(1, 10)) targs = target_recognition(img, tpar, 0, cpar) self.assertEqual(len(targs), 1) self.assertEqual(targs[0].count_pixels(), (4, 3, 2))
def py_detection_proc_c(list_of_images, cpar, tpar, cals): """ Detection of targets """ pftVersionParams = par.PftVersionParams(path='./parameters') pftVersionParams.read() Existing_Target = np.bool(pftVersionParams.Existing_Target) detections, corrected = [], [] for i_cam, img in enumerate(list_of_images): if Existing_Target: targs = read_targets(cpar.get_img_base_name(i_cam), 0) else: targs = target_recognition(img, tpar, i_cam, cpar) targs.sort_y() detections.append(targs) mc = MatchedCoords(targs, cpar, cals[i_cam]) corrected.append(mc) return detections, corrected
def py_sequence_loop(exp): """ Runs a sequence of detection, stereo-correspondence, determination and stores the data in the cam#.XXX_targets (rewritten) and rt_is.XXX files. Basically it is to run the batch as in pyptv_batch.py without tracking """ n_cams, cpar, spar, vpar, tpar, cals = \ exp.n_cams, exp.cpar, exp.spar, exp.vpar, exp.tpar, exp.cals pftVersionParams = par.PftVersionParams(path='./parameters') pftVersionParams.read() Existing_Target = np.bool(pftVersionParams.Existing_Target) # sequence loop for all frames for frame in range(spar.get_first(), spar.get_last() + 1): print("processing frame %d" % frame) detections = [] corrected = [] for i_cam in range(n_cams): if Existing_Target: targs = read_targets(spar.get_img_base_name(i_cam), frame) else: imname = spar.get_img_base_name(i_cam) + str(frame).encode() print(imname) if not os.path.exists(imname): print(os.path.abspath(os.path.curdir)) print('{0} does not exist'.format(imname)) img = imread(imname.decode()) # time.sleep(.1) # I'm not sure we need it here hp = simple_highpass(img, cpar) targs = target_recognition(hp, tpar, i_cam, cpar) targs.sort_y() detections.append(targs) mc = MatchedCoords(targs, cpar, cals[i_cam]) pos, pnr = mc.as_arrays() corrected.append(mc) # if any([len(det) == 0 for det in detections]): # return False # Corresp. + positions. sorted_pos, sorted_corresp, num_targs = correspondences( detections, corrected, cals, vpar, cpar) # Save targets only after they've been modified: for i_cam in range(n_cams): detections[i_cam].write(spar.get_img_base_name(i_cam), frame) print("Frame " + str(frame) + " had " \ + repr([s.shape[1] for s in sorted_pos]) + " correspondences.") # Distinction between quad/trip irrelevant here. sorted_pos = np.concatenate(sorted_pos, axis=1) sorted_corresp = np.concatenate(sorted_corresp, axis=1) flat = np.array([corrected[i].get_by_pnrs(sorted_corresp[i]) \ for i in range(len(cals))]) pos, rcm = point_positions(flat.transpose(1, 0, 2), cpar, cals, vpar) # if len(cals) == 1: # single camera case # sorted_corresp = np.tile(sorted_corresp,(4,1)) # sorted_corresp[1:,:] = -1 if len(cals) < 4: print_corresp = -1 * np.ones((4, sorted_corresp.shape[1])) print_corresp[:len(cals), :] = sorted_corresp else: print_corresp = sorted_corresp # Save rt_is print(default_naming['corres']) rt_is = open(default_naming['corres'] + b'.' + str(frame).encode(), 'w') rt_is.write(str(pos.shape[0]) + '\n') for pix, pt in enumerate(pos): pt_args = (pix + 1, ) + tuple(pt) + tuple(print_corresp[:, pix]) rt_is.write("%4d %9.3f %9.3f %9.3f %4d %4d %4d %4d\n" % pt_args) rt_is.close()
def run_batch(new_seq_first, new_seq_last): """ this file runs inside exp_path, so the other names are prescribed by the OpenPTV type of a folder: /parameters /img /cal /res """ # read the number of cameras with open('parameters/ptv.par', 'r') as f: n_cams = int(f.readline()) # Control parameters cpar = ControlParams(n_cams) cpar.read_control_par(b'parameters/ptv.par') # Sequence parameters spar = SequenceParams(num_cams=n_cams) spar.read_sequence_par(b'parameters/sequence.par', n_cams) spar.set_first(new_seq_first) spar.set_last(new_seq_last) # Volume parameters vpar = VolumeParams() vpar.read_volume_par(b'parameters/criteria.par') # Tracking parameters track_par = TrackingParams() track_par.read_track_par(b'parameters/track.par') # Target parameters tpar = TargetParams() tpar.read(b'parameters/targ_rec.par') # # Calibration parameters cals = [] for i_cam in range(n_cams): cal = Calibration() tmp = cpar.get_cal_img_base_name(i_cam) cal.from_file(tmp + b'.ori', tmp + b'.addpar') cals.append(cal) # sequence loop for all frames for frame in range(new_seq_first, new_seq_last + 1): print("processing frame %d" % frame) detections = [] corrected = [] for i_cam in range(n_cams): imname = spar.get_img_base_name(i_cam) + str(frame) img = imread(imname) hp = simple_highpass(img, cpar) targs = target_recognition(hp, tpar, i_cam, cpar) print(targs) targs.sort_y() detections.append(targs) mc = MatchedCoords(targs, cpar, cals[i_cam]) pos, pnr = mc.as_arrays() print(i_cam) corrected.append(mc) # if any([len(det) == 0 for det in detections]): # return False # Corresp. + positions. sorted_pos, sorted_corresp, num_targs = correspondences( detections, corrected, cals, vpar, cpar) # Save targets only after they've been modified: for i_cam in xrange(n_cams): detections[i_cam].write(spar.get_img_base_name(i_cam), frame) print("Frame " + str(frame) + " had " \ + repr([s.shape[1] for s in sorted_pos]) + " correspondences.") # Distinction between quad/trip irrelevant here. sorted_pos = np.concatenate(sorted_pos, axis=1) sorted_corresp = np.concatenate(sorted_corresp, axis=1) flat = np.array([corrected[i].get_by_pnrs(sorted_corresp[i]) \ for i in xrange(len(cals))]) pos, rcm = point_positions(flat.transpose(1, 0, 2), cpar, cals, vpar) if len(cals) < 4: print_corresp = -1 * np.ones((4, sorted_corresp.shape[1])) print_corresp[:len(cals), :] = sorted_corresp else: print_corresp = sorted_corresp # Save rt_is rt_is = open(default_naming['corres'] + '.' + str(frame), 'w') rt_is.write(str(pos.shape[0]) + '\n') for pix, pt in enumerate(pos): pt_args = (pix + 1, ) + tuple(pt) + tuple(print_corresp[:, pix]) rt_is.write("%4d %9.3f %9.3f %9.3f %4d %4d %4d %4d\n" % pt_args) rt_is.close() # end of a sequence loop tracker = Tracker(cpar, vpar, track_par, spar, cals, default_naming) tracker.full_forward()