示例#1
0
def test_wwo_update_wave_length():
    search_space = search.SearchSpace(n_agents=50,
                                      n_variables=2,
                                      lower_bound=[0, 0],
                                      upper_bound=[10, 10])

    new_wwo = wwo.WWO()
    new_wwo.compile(search_space)

    new_wwo._update_wave_length(search_space.agents)
示例#2
0
def test_wwo_params():
    params = {"h_max": 5, "alpha": 1.001, "beta": 0.001, "k_max": 1}

    new_wwo = wwo.WWO(params=params)

    assert new_wwo.h_max == 5

    assert new_wwo.alpha == 1.001

    assert new_wwo.beta == 0.001

    assert new_wwo.k_max == 1
示例#3
0
def test_wwo_params():
    params = {'h_max': 5, 'alpha': 1.001, 'beta': 0.001, 'k_max': 1}

    new_wwo = wwo.WWO(params=params)

    assert new_wwo.h_max == 5

    assert new_wwo.alpha == 1.001

    assert new_wwo.beta == 0.001

    assert new_wwo.k_max == 1
示例#4
0
def test_wwo_params_setter():
    new_wwo = wwo.WWO()

    try:
        new_wwo.h_max = "a"
    except:
        new_wwo.h_max = 5

    try:
        new_wwo.h_max = -1
    except:
        new_wwo.h_max = 5

    assert new_wwo.h_max == 5

    try:
        new_wwo.alpha = "b"
    except:
        new_wwo.alpha = 1.001

    try:
        new_wwo.alpha = -1
    except:
        new_wwo.alpha = 1.001

    assert new_wwo.alpha == 1.001

    try:
        new_wwo.beta = "c"
    except:
        new_wwo.beta = 0.001

    try:
        new_wwo.beta = -1
    except:
        new_wwo.beta = 0.001

    assert new_wwo.beta == 0.001

    try:
        new_wwo.k_max = "d"
    except:
        new_wwo.k_max = 1

    try:
        new_wwo.k_max = -1
    except:
        new_wwo.k_max = 1

    assert new_wwo.k_max == 1
示例#5
0
def test_wwo_update():
    def square(x):
        return np.sum(x**2)

    search_space = search.SearchSpace(n_agents=50,
                                      n_variables=2,
                                      lower_bound=[0, 0],
                                      upper_bound=[10, 10])

    new_wwo = wwo.WWO()
    new_wwo.compile(search_space)

    new_wwo.update(search_space, square)
    new_wwo.update(search_space, square)
示例#6
0
def test_wwo_hyperparams_setter():
    new_wwo = wwo.WWO()

    try:
        new_wwo.h_max = 'a'
    except:
        new_wwo.h_max = 5

    try:
        new_wwo.h_max = -1
    except:
        new_wwo.h_max = 5

    assert new_wwo.h_max == 5

    try:
        new_wwo.alpha = 'b'
    except:
        new_wwo.alpha = 1.001

    try:
        new_wwo.alpha = -1
    except:
        new_wwo.alpha = 1.001

    assert new_wwo.alpha == 1.001

    try:
        new_wwo.beta = 'c'
    except:
        new_wwo.beta = 0.001

    try:
        new_wwo.beta = -1
    except:
        new_wwo.beta = 0.001

    assert new_wwo.beta == 0.001

    try:
        new_wwo.k_max = 'd'
    except:
        new_wwo.k_max = 1

    try:
        new_wwo.k_max = -1
    except:
        new_wwo.k_max = 1

    assert new_wwo.k_max == 1
示例#7
0
def test_wwo_propagate_wave():
    def square(x):
        return np.sum(x**2)

    search_space = search.SearchSpace(n_agents=50,
                                      n_variables=2,
                                      lower_bound=[0, 0],
                                      upper_bound=[10, 10])

    new_wwo = wwo.WWO()
    new_wwo.compile(search_space)

    wave = new_wwo._propagate_wave(search_space.agents[0], square, 0)

    assert type(wave).__name__ == "Agent"
示例#8
0
def test_wwo_refract_wave():
    def square(x):
        return np.sum(x**2)

    search_space = search.SearchSpace(n_agents=50,
                                      n_variables=2,
                                      lower_bound=[0, 0],
                                      upper_bound=[10, 10])

    new_wwo = wwo.WWO()
    new_wwo.compile(search_space)

    height, length = new_wwo._refract_wave(search_space.agents[0],
                                           search_space.best_agent, square, 0)

    assert height == 5
    assert length != 0
示例#9
0
def test_wwo_compile():
    search_space = search.SearchSpace(n_agents=50,
                                      n_variables=2,
                                      lower_bound=[0, 0],
                                      upper_bound=[10, 10])

    new_wwo = wwo.WWO()
    new_wwo.compile(search_space)

    try:
        new_wwo.height = 1
    except:
        new_wwo.height = np.array([1])

    assert new_wwo.height == np.array([1])

    try:
        new_wwo.length = 1
    except:
        new_wwo.length = np.array([1])

    assert new_wwo.length == np.array([1])
示例#10
0
def test_wwo_run():
    def square(x):
        return np.sum(x**2)

    def hook(optimizer, space, function):
        return

    new_function = function.Function(pointer=square)

    new_wwo = wwo.WWO({'k_max': 20})

    search_space = search.SearchSpace(n_agents=10, n_iterations=100,
                                      n_variables=2, lower_bound=[0, 0],
                                      upper_bound=[10, 10])

    history = new_wwo.run(search_space, new_function, pre_evaluation=hook)

    assert len(history.agents) > 0
    assert len(history.best_agent) > 0

    best_fitness = history.best_agent[-1][1]
    assert best_fitness <= constants.TEST_EPSILON, 'The algorithm wwo failed to converge.'
示例#11
0
def test_wwo_build():
    new_wwo = wwo.WWO()

    assert new_wwo.built == True