def test_convergence_plot(): agent_pos = [[0.5, 0.4, 0.3], [0.5, 0.4, 0.3]] try: convergence.plot(agent_pos[0], agent_pos[1], labels=1) except: convergence.plot(agent_pos[0], agent_pos[1], labels=["agent[0]", "agent[1]"]) try: convergence.plot(agent_pos[0], agent_pos[1], labels=["agent[0]"]) except: convergence.plot(agent_pos[0], agent_pos[1])
def test_convergence_plot(): new_history = history.History() new_history.load('models/test.pkl') agents = new_history.get(key='agents', index=(0, 0)) try: convergence.plot(agents[0], agents[1], labels=1) except: convergence.plot(agents[0], agents[1], labels=['agent[0]', 'agent[1]']) try: convergence.plot(agents[0], agents[1], labels=['agent[0]']) except: convergence.plot(agents[0], agents[1])
import opytimizer.visualization.convergence as c # Defines agent's position and fitness agent_pos = [[0.5, 0.4, 0.3], [0.5, 0.4, 0.3]] agent_fit = [0.5, 0.32, 0.18] # Defines best agent's position and fitness best_agent_pos = [[0.01, 0.005, 0.0001], [0.01, 0.005, 0.0001]] best_agent_fit = [0.0002, 0.00005, 0.00002] # Plotting the convergence of agent's positions c.plot(agent_pos[0], agent_pos[1], labels=['$x_0$', '$x_1$'], title='Sphere Function: $x^2 \mid x \in [-10, 10]$', subtitle='Agent: 0 | Algorithm: Particle Swarm Optimization') # Plotting the convergence of best agent's positions c.plot(best_agent_pos[0], best_agent_pos[1], labels=['$x^*_0$', '$x^*_1$'], title='Sphere Function: $x^2 \mid x \in [-10, 10]$', subtitle="Agent: Best | Algorithm: Particle Swarm Optimization") # Plotting the convergence of agent's and best agent's fitness c.plot(agent_fit, best_agent_fit, labels=['$f(x)$', '$f(x^{*})$'], title='Sphere Function: $x^2 \mid x \in [-10, 10]$', subtitle="Agents: 0 and Best | Algorithm: Particle Swarm Optimization")
import opytimizer.visualization.convergence as c # Defines agent's position and fitness agent_pos = [[0.5, 0.4, 0.3], [0.5, 0.4, 0.3]] agent_fit = [0.5, 0.32, 0.18] # Defines best agent's position and fitness best_agent_pos = [[0.01, 0.005, 0.0001], [0.01, 0.005, 0.0001]] best_agent_fit = [0.0002, 0.00005, 0.00002] # Plotting the convergence of agent's positions c.plot( agent_pos[0], agent_pos[1], labels=["$x_0$", "$x_1$"], title="Sphere Function: $x^2 \mid x \in [-10, 10]$", subtitle="Agent: 0 | Algorithm: Particle Swarm Optimization", ) # Plotting the convergence of best agent's positions c.plot( best_agent_pos[0], best_agent_pos[1], labels=["$x^*_0$", "$x^*_1$"], title="Sphere Function: $x^2 \mid x \in [-10, 10]$", subtitle="Agent: Best | Algorithm: Particle Swarm Optimization", ) # Plotting the convergence of agent's and best agent's fitness c.plot( agent_fit,