def run_enrichment(org_code, genes, reference, progress=None): # We use the kegg pathway gene sets provided by 'geneset' for # the enrichment calculation. kegg_api = kegg.api.CachedKeggApi() link_map = kegg_api.link(org_code, "pathway") # [(pathway_id, kegg_gene_id)] ncbi_gene_map = kegg_api.conv( org_code, 'ncbi-geneid') # [(ncbi_gene_id, kegg_gene_id)] ncbi_gene_map = [(_1.split(":", 1)[1], _2) for _1, _2 in ncbi_gene_map] link_map = relation_join( link_map, [(_2, _1) for _1, _2 in ncbi_gene_map]) # [(pathway_id, ncbi_gene_id)] kegg_sets = relation_list_to_multimap( link_map) # {pathway_id -> [ncbi_gene_ids]} # map kegg gene ids to ncbi_gene_ids. kegg_sets = geneset.GeneSets(sets=[ geneset.GeneSet(gs_id=ddi, genes=set(genes)) for ddi, genes in kegg_sets.items() ]) pathways = pathway_enrichment(kegg_sets, genes, reference, callback=progress) # Ensure that pathway entries are pre-cached for later use in the # list/tree view kegg_pathways = kegg.KEGGPathways() kegg_pathways.pre_cache(pathways.keys(), progress_callback=progress) return pathways, ncbi_gene_map
def run_enrichment(genes, reference, progress=None): # We use the kegg pathway gene sets provided by 'geneset' for # the enrichment calculation. kegg_api = kegg.api.CachedKeggApi() linkmap = kegg_api.link(self.org.org_code, "pathway") converted_ids = kegg_api.conv(self.org.org_code, 'ncbi-geneid') kegg_sets = relation_list_to_multimap(linkmap, { gene.upper(): ncbi.split(':')[-1] for ncbi, gene in converted_ids }) kegg_sets = geneset.GeneSets(sets=[ geneset.GeneSet(gs_id=ddi, genes=set(genes)) for ddi, genes in kegg_sets.items() ]) pathways = pathway_enrichment(kegg_sets, genes, reference, callback=progress) # Ensure that pathway entries are pre-cached for later use in the # list/tree view kegg_pathways = kegg.KEGGPathways() kegg_pathways.pre_cache(pathways.keys(), progress_callback=progress) return pathways
def run_enrichment(org_code, genes, reference=None, progress=None): org = kegg.KEGGOrganism(org_code) if reference is None: reference = org.get_ncbi_ids() # This is here just to keep widget working without any major changes. # map not needed, geneMatcher will not work on widget level. unique_genes = genes unique_ref_genes = dict([(gene, gene) for gene in set(reference)]) taxid = kegg.to_taxid(org.org_code) # Map the taxid back to standard 'common' taxids # (as used by 'geneset') if applicable r_tax_map = dict( (v, k) for k, v in kegg.KEGGGenome.TAXID_MAP.items()) if taxid in r_tax_map: taxid = r_tax_map[taxid] # We use the kegg pathway gene sets provided by 'geneset' for # the enrichment calculation. kegg_api = kegg.api.CachedKeggApi() linkmap = kegg_api.link(org.org_code, "pathway") converted_ids = kegg_api.conv(org.org_code, 'ncbi-geneid') kegg_sets = relation_list_to_multimap( linkmap, dict((gene.upper(), ncbi.split(':')[-1]) for ncbi, gene in converted_ids)) kegg_sets = geneset.GeneSets(sets=[ geneset.GeneSet(gs_id=ddi, genes=set(genes)) for ddi, genes in kegg_sets.items() ]) pathways = pathway_enrichment(kegg_sets, unique_genes.values(), unique_ref_genes.keys(), callback=progress) # Ensure that pathway entries are pre-cached for later use in the # list/tree view kegg_pathways = kegg.KEGGPathways() kegg_pathways.pre_cache(pathways.keys(), progress_callback=progress) return pathways, org, unique_genes, unique_ref_genes
def UpdateListView(self): self.bestPValueItem = None self.listView.clear() if not self.data: return allPathways = self.org.pathways() allRefPathways = kegg.pathways("map") items = [] kegg_pathways = kegg.KEGGPathways() org_code = self.org.org_code if self.showOrthology: self.koOrthology = kegg.KEGGBrite("ko00001") self.listView.setRootIsDecorated(True) path_ids = {s[-5:] for s in self.pathways.keys()} def _walkCollect(koEntry): num = koEntry.title[:5] if koEntry.title else None if num in path_ids: return [koEntry] + reduce( lambda li, c: li + _walkCollect(c), [child for child in koEntry.entries], []) else: c = reduce(lambda li, c: li + _walkCollect(c), [child for child in koEntry.entries], []) return c + (c and [koEntry] or []) allClasses = reduce(lambda li1, li2: li1 + li2, [_walkCollect(c) for c in self.koOrthology], []) def _walkCreate(koEntry, lvItem): item = QTreeWidgetItem(lvItem) id = "path:" + org_code + koEntry.title[:5] if koEntry.title[:5] in path_ids: p = kegg_pathways.get_entry(id) if p is None: # In case the genesets still have obsolete entries name = koEntry.title else: name = p.name genes, p_value, ref = self.pathways[id] item.setText(0, name) item.setText(1, "%.5f" % p_value) item.setText( 2, "%i of %i" % (len(genes), len(self.input_genes))) item.setText(3, "%i of %i" % (ref, len(self.ref_genes))) item.pathway_id = id if p is not None else None else: if id in allPathways: text = kegg_pathways.get_entry(id).name else: text = koEntry.title item.setText(0, text) if id in allPathways: item.pathway_id = id elif "path:map" + koEntry.title[:5] in allRefPathways: item.pathway_id = "path:map" + koEntry.title[:5] else: item.pathway_id = None for child in koEntry.entries: if child in allClasses: _walkCreate(child, item) for koEntry in self.koOrthology: if koEntry in allClasses: _walkCreate(koEntry, self.listView) self.listView.update() else: self.listView.setRootIsDecorated(False) pathways = self.pathways.items() pathways = sorted(pathways, key=lambda item: item[1][1]) for id, (genes, p_value, ref) in pathways: item = QTreeWidgetItem(self.listView) item.setText(0, kegg_pathways.get_entry(id).name) item.setText(1, "%.5f" % p_value) item.setText(2, "%i of %i" % (len(genes), len(self.input_genes))) item.setText(3, "%i of %i" % (ref, len(self.ref_genes))) item.pathway_id = id items.append(item) self.bestPValueItem = items and items[0] or None self.listView.expandAll() for i in range(4): self.listView.resizeColumnToContents(i) if self.bestPValueItem: index = self.listView.indexFromItem(self.bestPValueItem) self.listView.selectionModel().select( index, QItemSelectionModel.ClearAndSelect)